Metamath Proof Explorer


Theorem cflecard

Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion cflecard ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 )

Proof

Step Hyp Ref Expression
1 cfval ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
2 df-sn { ( card ‘ 𝐴 ) } = { 𝑥𝑥 = ( card ‘ 𝐴 ) }
3 ssid 𝐴𝐴
4 ssid 𝑧𝑧
5 sseq2 ( 𝑤 = 𝑧 → ( 𝑧𝑤𝑧𝑧 ) )
6 5 rspcev ( ( 𝑧𝐴𝑧𝑧 ) → ∃ 𝑤𝐴 𝑧𝑤 )
7 4 6 mpan2 ( 𝑧𝐴 → ∃ 𝑤𝐴 𝑧𝑤 )
8 7 rgen 𝑧𝐴𝑤𝐴 𝑧𝑤
9 3 8 pm3.2i ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 )
10 fveq2 ( 𝑦 = 𝐴 → ( card ‘ 𝑦 ) = ( card ‘ 𝐴 ) )
11 10 eqeq2d ( 𝑦 = 𝐴 → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ 𝐴 ) ) )
12 sseq1 ( 𝑦 = 𝐴 → ( 𝑦𝐴𝐴𝐴 ) )
13 rexeq ( 𝑦 = 𝐴 → ( ∃ 𝑤𝑦 𝑧𝑤 ↔ ∃ 𝑤𝐴 𝑧𝑤 ) )
14 13 ralbidv ( 𝑦 = 𝐴 → ( ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ↔ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) )
15 12 14 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ↔ ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) ) )
16 11 15 anbi12d ( 𝑦 = 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ↔ ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) ) ) )
17 16 spcegv ( 𝐴 ∈ On → ( ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴𝐴 ∧ ∀ 𝑧𝐴𝑤𝐴 𝑧𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ) )
18 9 17 mpan2i ( 𝐴 ∈ On → ( 𝑥 = ( card ‘ 𝐴 ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) ) )
19 18 ss2abdv ( 𝐴 ∈ On → { 𝑥𝑥 = ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
20 2 19 eqsstrid ( 𝐴 ∈ On → { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } )
21 intss ( { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } ⊆ { ( card ‘ 𝐴 ) } )
22 20 21 syl ( 𝐴 ∈ On → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } ⊆ { ( card ‘ 𝐴 ) } )
23 fvex ( card ‘ 𝐴 ) ∈ V
24 23 intsn { ( card ‘ 𝐴 ) } = ( card ‘ 𝐴 )
25 22 24 sseqtrdi ( 𝐴 ∈ On → { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦𝐴 ∧ ∀ 𝑧𝐴𝑤𝑦 𝑧𝑤 ) ) } ⊆ ( card ‘ 𝐴 ) )
26 1 25 eqsstrd ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) )
27 cff cf : On ⟶ On
28 27 fdmi dom cf = On
29 28 eleq2i ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On )
30 ndmfv ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ )
31 29 30 sylnbir ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ )
32 0ss ∅ ⊆ ( card ‘ 𝐴 )
33 31 32 eqsstrdi ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) )
34 26 33 pm2.61i ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 )