| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlemethnat.r |
⊢ 𝑅 = ( ♯ ‘ ( 𝐴 ( repr ‘ 𝑆 ) 𝑁 ) ) |
| 2 |
|
circlemethnat.f |
⊢ 𝐹 = ( ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) vts 𝑁 ) ‘ 𝑥 ) |
| 3 |
|
circlemethnat.n |
⊢ 𝑁 ∈ ℕ0 |
| 4 |
|
circlemethnat.a |
⊢ 𝐴 ⊆ ℕ |
| 5 |
|
circlemethnat.s |
⊢ 𝑆 ∈ ℕ |
| 6 |
|
nnex |
⊢ ℕ ∈ V |
| 7 |
|
indf |
⊢ ( ( ℕ ∈ V ∧ 𝐴 ⊆ ℕ ) → ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ { 0 , 1 } ) |
| 8 |
6 4 7
|
mp2an |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ { 0 , 1 } |
| 9 |
|
pr01ssre |
⊢ { 0 , 1 } ⊆ ℝ |
| 10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 11 |
9 10
|
sstri |
⊢ { 0 , 1 } ⊆ ℂ |
| 12 |
|
fss |
⊢ ( ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ { 0 , 1 } ∧ { 0 , 1 } ⊆ ℂ ) → ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ ℂ ) |
| 13 |
8 11 12
|
mp2an |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ ℂ |
| 14 |
|
cnex |
⊢ ℂ ∈ V |
| 15 |
14 6
|
elmap |
⊢ ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ∈ ( ℂ ↑m ℕ ) ↔ ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ ℂ ) |
| 16 |
13 15
|
mpbir |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ∈ ( ℂ ↑m ℕ ) |
| 17 |
16
|
elexi |
⊢ ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ∈ V |
| 18 |
17
|
fvconst2 |
⊢ ( 𝑎 ∈ ( 0 ..^ 𝑆 ) → ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) = ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) = ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ) |
| 20 |
19
|
fveq1d |
⊢ ( ( ( ⊤ ∧ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 21 |
20
|
prodeq2dv |
⊢ ( ( ⊤ ∧ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 22 |
21
|
sumeq2dv |
⊢ ( ⊤ → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 23 |
4
|
a1i |
⊢ ( ⊤ → 𝐴 ⊆ ℕ ) |
| 24 |
3
|
a1i |
⊢ ( ⊤ → 𝑁 ∈ ℕ0 ) |
| 25 |
5
|
a1i |
⊢ ( ⊤ → 𝑆 ∈ ℕ ) |
| 26 |
25
|
nnnn0d |
⊢ ( ⊤ → 𝑆 ∈ ℕ0 ) |
| 27 |
23 24 26
|
hashrepr |
⊢ ( ⊤ → ( ♯ ‘ ( 𝐴 ( repr ‘ 𝑆 ) 𝑁 ) ) = Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 28 |
22 27
|
eqtr4d |
⊢ ( ⊤ → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = ( ♯ ‘ ( 𝐴 ( repr ‘ 𝑆 ) 𝑁 ) ) ) |
| 29 |
1 28
|
eqtr4id |
⊢ ( ⊤ → 𝑅 = Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 30 |
16
|
fconst6 |
⊢ ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) |
| 31 |
30
|
a1i |
⊢ ( ⊤ → ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) |
| 32 |
24 25 31
|
circlemeth |
⊢ ( ⊤ → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
| 33 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
| 34 |
33
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 35 |
3
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑁 ∈ ℕ0 ) |
| 36 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 37 |
36 10
|
sstri |
⊢ ( 0 (,) 1 ) ⊆ ℂ |
| 38 |
37
|
a1i |
⊢ ( ⊤ → ( 0 (,) 1 ) ⊆ ℂ ) |
| 39 |
38
|
sselda |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑥 ∈ ℂ ) |
| 40 |
13
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) : ℕ ⟶ ℂ ) |
| 41 |
35 39 40
|
vtscl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) vts 𝑁 ) ‘ 𝑥 ) ∈ ℂ ) |
| 42 |
2 41
|
eqeltrid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝐹 ∈ ℂ ) |
| 43 |
|
fprodconst |
⊢ ( ( ( 0 ..^ 𝑆 ) ∈ Fin ∧ 𝐹 ∈ ℂ ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) 𝐹 = ( 𝐹 ↑ ( ♯ ‘ ( 0 ..^ 𝑆 ) ) ) ) |
| 44 |
34 42 43
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) 𝐹 = ( 𝐹 ↑ ( ♯ ‘ ( 0 ..^ 𝑆 ) ) ) ) |
| 45 |
18
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) = ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) = ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) vts 𝑁 ) ) |
| 47 |
46
|
fveq1d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = ( ( ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) vts 𝑁 ) ‘ 𝑥 ) ) |
| 48 |
2 47
|
eqtr4id |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐹 = ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) ) |
| 49 |
48
|
prodeq2dv |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) 𝐹 = ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) ) |
| 50 |
26
|
adantr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑆 ∈ ℕ0 ) |
| 51 |
|
hashfzo0 |
⊢ ( 𝑆 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑆 ) ) = 𝑆 ) |
| 52 |
50 51
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ♯ ‘ ( 0 ..^ 𝑆 ) ) = 𝑆 ) |
| 53 |
52
|
oveq2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( 𝐹 ↑ ( ♯ ‘ ( 0 ..^ 𝑆 ) ) ) = ( 𝐹 ↑ 𝑆 ) ) |
| 54 |
44 49 53
|
3eqtr3d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = ( 𝐹 ↑ 𝑆 ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( 𝐹 ↑ 𝑆 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 56 |
55
|
itgeq2dv |
⊢ ( ⊤ → ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( ( ( 0 ..^ 𝑆 ) × { ( ( 𝟭 ‘ ℕ ) ‘ 𝐴 ) } ) ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) ( ( 𝐹 ↑ 𝑆 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
| 57 |
29 32 56
|
3eqtrd |
⊢ ( ⊤ → 𝑅 = ∫ ( 0 (,) 1 ) ( ( 𝐹 ↑ 𝑆 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |
| 58 |
57
|
mptru |
⊢ 𝑅 = ∫ ( 0 (,) 1 ) ( ( 𝐹 ↑ 𝑆 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 |