| Step |
Hyp |
Ref |
Expression |
| 1 |
|
circlemeth.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 2 |
|
circlemeth.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
| 3 |
|
circlemeth.l |
⊢ ( 𝜑 → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑁 ∈ ℕ0 ) |
| 5 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 6 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 7 |
5 6
|
sstri |
⊢ ( 0 (,) 1 ) ⊆ ℂ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → ( 0 (,) 1 ) ⊆ ℂ ) |
| 9 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑥 ∈ ℂ ) |
| 10 |
2
|
nnnn0d |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝑆 ∈ ℕ0 ) |
| 12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) |
| 13 |
4 9 11 12
|
vtsprod |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿 ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿 ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 15 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) |
| 16 |
|
ax-icn |
⊢ i ∈ ℂ |
| 17 |
|
2cn |
⊢ 2 ∈ ℂ |
| 18 |
|
picn |
⊢ π ∈ ℂ |
| 19 |
17 18
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 20 |
16 19
|
mulcli |
⊢ ( i · ( 2 · π ) ) ∈ ℂ |
| 21 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 22 |
1
|
nn0cnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 23 |
22
|
negcld |
⊢ ( 𝜑 → - 𝑁 ∈ ℂ ) |
| 24 |
23
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 (,) 1 ) - 𝑁 ∈ ℂ ) |
| 25 |
24
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → - 𝑁 ∈ ℂ ) |
| 26 |
25 9
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( - 𝑁 · 𝑥 ) ∈ ℂ ) |
| 27 |
21 26
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ ) |
| 28 |
27
|
efcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ ) |
| 29 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 30 |
29
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) |
| 32 |
31
|
elfzelzd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℤ ) |
| 33 |
32
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℤ ) |
| 34 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑆 ∈ ℕ0 ) |
| 35 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 36 |
30 33 34 35
|
reprfi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∈ Fin ) |
| 37 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
| 38 |
37
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 39 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℕ0 ) |
| 40 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑆 ∈ ℕ0 ) |
| 41 |
32
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℂ ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑚 ∈ ℂ ) |
| 43 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) |
| 44 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
| 45 |
29
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 46 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑚 ∈ ℤ ) |
| 47 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑆 ∈ ℕ0 ) |
| 48 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) |
| 49 |
45 46 47 48
|
reprf |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) ) |
| 50 |
49
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑎 ) ∈ ( 1 ... 𝑁 ) ) |
| 51 |
29 50
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑎 ) ∈ ℕ ) |
| 52 |
39 40 42 43 44 51
|
breprexplemb |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 53 |
52
|
adantl3r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 54 |
38 53
|
fprodcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 55 |
20
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( i · ( 2 · π ) ) ∈ ℂ ) |
| 56 |
33
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑚 ∈ ℂ ) |
| 57 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑥 ∈ ℂ ) |
| 58 |
56 57
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 · 𝑥 ) ∈ ℂ ) |
| 59 |
55 58
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ∈ ℂ ) |
| 60 |
59
|
efcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ∈ ℂ ) |
| 61 |
60
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ∈ ℂ ) |
| 62 |
54 61
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) ∈ ℂ ) |
| 63 |
36 62
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) ∈ ℂ ) |
| 64 |
15 28 63
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 65 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ ) |
| 66 |
36 65 62
|
fsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 67 |
65
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ∈ ℂ ) |
| 68 |
54 61 67
|
mulassd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) ) |
| 69 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ ) |
| 70 |
|
efadd |
⊢ ( ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ∈ ℂ ∧ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ∈ ℂ ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 71 |
59 69 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) |
| 72 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( - 𝑁 · 𝑥 ) ∈ ℂ ) |
| 73 |
55 58 72
|
adddid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) ) = ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) |
| 74 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → - 𝑁 ∈ ℂ ) |
| 75 |
56 74 57
|
adddird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 + - 𝑁 ) · 𝑥 ) = ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) ) |
| 76 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
| 77 |
56 76
|
negsubd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 + - 𝑁 ) = ( 𝑚 − 𝑁 ) ) |
| 78 |
77
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 + - 𝑁 ) · 𝑥 ) = ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) |
| 79 |
75 78
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) = ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) |
| 80 |
79
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 · 𝑥 ) + ( - 𝑁 · 𝑥 ) ) ) = ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) |
| 81 |
73 80
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) = ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( exp ‘ ( ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) + ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) |
| 83 |
71 82
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 85 |
84
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 86 |
68 85
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 87 |
86
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 88 |
66 87
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 89 |
88
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( 𝑚 · 𝑥 ) ) ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 90 |
14 64 89
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿 ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) |
| 91 |
90
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿 ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 = ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) |
| 92 |
|
ioombl |
⊢ ( 0 (,) 1 ) ∈ dom vol |
| 93 |
92
|
a1i |
⊢ ( 𝜑 → ( 0 (,) 1 ) ∈ dom vol ) |
| 94 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) |
| 95 |
|
sumex |
⊢ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ V |
| 96 |
95
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 (,) 1 ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ V ) |
| 97 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ∈ dom vol ) |
| 98 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 99 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑆 ∈ ℕ0 ) |
| 100 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 101 |
98 32 99 100
|
reprfi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∈ Fin ) |
| 102 |
37
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 103 |
52
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 104 |
102 103
|
fprodcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 105 |
56 76
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 − 𝑁 ) ∈ ℂ ) |
| 106 |
105 57
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 − 𝑁 ) · 𝑥 ) ∈ ℂ ) |
| 107 |
55 106
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ∈ ℂ ) |
| 108 |
107
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ∈ ℂ ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ∈ ℂ ) |
| 110 |
109
|
efcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ∈ ℂ ) |
| 111 |
104 110
|
mulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ ℂ ) |
| 112 |
111
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ ( 𝑥 ∈ ( 0 (,) 1 ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ ℂ ) |
| 113 |
37
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 114 |
113 52
|
fprodcl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 115 |
|
fvex |
⊢ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ∈ V |
| 116 |
115
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ∈ V ) |
| 117 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
| 118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) ) |
| 119 |
92
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 (,) 1 ) ∈ dom vol ) |
| 120 |
115
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ∈ V ) |
| 121 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 0 ∈ ℝ ) |
| 122 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 1 ∈ ℝ ) |
| 123 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
| 124 |
41 123
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 − 𝑁 ) ∈ ℂ ) |
| 125 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 126 |
125
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 127 |
|
ssidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ℂ ⊆ ℂ ) |
| 128 |
|
cncfmptc |
⊢ ( ( ( 𝑚 − 𝑁 ) ∈ ℂ ∧ ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑚 − 𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 129 |
124 126 127 128
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝑚 − 𝑁 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 130 |
|
cncfmptid |
⊢ ( ( ( 0 [,] 1 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 131 |
126 127 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 132 |
129 131
|
mulcncf |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 133 |
132
|
efmul2picn |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) |
| 134 |
|
cniccibl |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ ( ( 0 [,] 1 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 135 |
121 122 133 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 136 |
118 119 120 135
|
iblss |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 137 |
136
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 138 |
114 116 137
|
iblmulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ) |
| 139 |
97 101 112 138
|
itgfsum |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ∧ ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) ) |
| 140 |
139
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ) |
| 141 |
93 94 96 140
|
itgfsum |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 0 (,) 1 ) ↦ Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) ) ∈ 𝐿1 ∧ ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) ) |
| 142 |
141
|
simprd |
⊢ ( 𝜑 → ∫ ( 0 (,) 1 ) Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) |
| 143 |
|
oveq2 |
⊢ ( if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) = 1 → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · 1 ) ) |
| 144 |
|
oveq2 |
⊢ ( if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) = 0 → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · 0 ) ) |
| 145 |
101 114
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 146 |
145
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · 1 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 147 |
145
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · 0 ) = 0 ) |
| 148 |
143 144 146 147
|
ifeq3da |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( ( 𝑚 − 𝑁 ) = 0 , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) ) |
| 149 |
|
velsn |
⊢ ( 𝑚 ∈ { 𝑁 } ↔ 𝑚 = 𝑁 ) |
| 150 |
41 123
|
subeq0ad |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( ( 𝑚 − 𝑁 ) = 0 ↔ 𝑚 = 𝑁 ) ) |
| 151 |
149 150
|
bitr4id |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( 𝑚 ∈ { 𝑁 } ↔ ( 𝑚 − 𝑁 ) = 0 ) ) |
| 152 |
151
|
ifbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) = if ( ( 𝑚 − 𝑁 ) = 0 , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) ) |
| 153 |
1
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 154 |
153
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → 𝑁 ∈ ℤ ) |
| 155 |
46 154
|
zsubcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( 𝑚 − 𝑁 ) ∈ ℤ ) |
| 156 |
|
itgexpif |
⊢ ( ( 𝑚 − 𝑁 ) ∈ ℤ → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 = if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) |
| 157 |
155 156
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 = if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) |
| 158 |
157
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) ) |
| 159 |
158
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) ) |
| 160 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 1 ∈ ℂ ) |
| 161 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → 0 ∈ ℂ ) |
| 162 |
160 161
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ∈ ℂ ) |
| 163 |
101 162 114
|
fsummulc1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) ) |
| 164 |
159 163
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ( Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · if ( ( 𝑚 − 𝑁 ) = 0 , 1 , 0 ) ) ) |
| 165 |
148 152 164
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) ) |
| 166 |
165
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) ) |
| 167 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 168 |
10
|
nn0zd |
⊢ ( 𝜑 → 𝑆 ∈ ℤ ) |
| 169 |
168 153
|
zmulcld |
⊢ ( 𝜑 → ( 𝑆 · 𝑁 ) ∈ ℤ ) |
| 170 |
1
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 171 |
|
nnmulge |
⊢ ( ( 𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ≤ ( 𝑆 · 𝑁 ) ) |
| 172 |
2 1 171
|
syl2anc |
⊢ ( 𝜑 → 𝑁 ≤ ( 𝑆 · 𝑁 ) ) |
| 173 |
167 169 153 170 172
|
elfzd |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) |
| 174 |
173
|
snssd |
⊢ ( 𝜑 → { 𝑁 } ⊆ ( 0 ... ( 𝑆 · 𝑁 ) ) ) |
| 175 |
174
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑁 } ) → 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) |
| 176 |
175 145
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ { 𝑁 } ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 177 |
176
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 178 |
94
|
olcd |
⊢ ( 𝜑 → ( ( 0 ... ( 𝑆 · 𝑁 ) ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) ) |
| 179 |
|
sumss2 |
⊢ ( ( ( { 𝑁 } ⊆ ( 0 ... ( 𝑆 · 𝑁 ) ) ∧ ∀ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) ∧ ( ( 0 ... ( 𝑆 · 𝑁 ) ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... ( 𝑆 · 𝑁 ) ) ∈ Fin ) ) → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) ) |
| 180 |
174 177 178 179
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) if ( 𝑚 ∈ { 𝑁 } , Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) , 0 ) ) |
| 181 |
29
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 182 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 183 |
181 153 10 182
|
reprfi |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∈ Fin ) |
| 184 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 185 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℕ0 ) |
| 186 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑆 ∈ ℕ0 ) |
| 187 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑁 ∈ ℂ ) |
| 188 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝐿 : ( 0 ..^ 𝑆 ) ⟶ ( ℂ ↑m ℕ ) ) |
| 189 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
| 190 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ( 1 ... 𝑁 ) ⊆ ℕ ) |
| 191 |
153
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 192 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑆 ∈ ℕ0 ) |
| 193 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) |
| 194 |
190 191 192 193
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ ( 1 ... 𝑁 ) ) |
| 195 |
194
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑎 ) ∈ ( 1 ... 𝑁 ) ) |
| 196 |
29 195
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑎 ) ∈ ℕ ) |
| 197 |
185 186 187 188 189 196
|
breprexplemb |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 198 |
184 197
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) → ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 199 |
183 198
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) |
| 200 |
|
oveq2 |
⊢ ( 𝑚 = 𝑁 → ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) = ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) |
| 201 |
200
|
sumeq1d |
⊢ ( 𝑚 = 𝑁 → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 202 |
201
|
sumsn |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 203 |
1 199 202
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑚 ∈ { 𝑁 } Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 204 |
166 180 203
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 205 |
139
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) |
| 206 |
110
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) ∧ 𝑥 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ∈ ℂ ) |
| 207 |
114 206 137
|
itgmulc2 |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) ∧ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ) → ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) |
| 208 |
207
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 ) |
| 209 |
205 208
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ) → ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) ) |
| 210 |
209
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ∫ ( 0 (,) 1 ) ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) d 𝑥 ) ) |
| 211 |
1 10
|
reprfz1 |
⊢ ( 𝜑 → ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) = ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ) |
| 212 |
211
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 213 |
204 210 212
|
3eqtr4d |
⊢ ( 𝜑 → Σ 𝑚 ∈ ( 0 ... ( 𝑆 · 𝑁 ) ) ∫ ( 0 (,) 1 ) Σ 𝑐 ∈ ( ( 1 ... 𝑁 ) ( repr ‘ 𝑆 ) 𝑚 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( ( 𝑚 − 𝑁 ) · 𝑥 ) ) ) ) d 𝑥 = Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) ) |
| 214 |
91 142 213
|
3eqtrrd |
⊢ ( 𝜑 → Σ 𝑐 ∈ ( ℕ ( repr ‘ 𝑆 ) 𝑁 ) ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝐿 ‘ 𝑎 ) ‘ ( 𝑐 ‘ 𝑎 ) ) = ∫ ( 0 (,) 1 ) ( ∏ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( ( 𝐿 ‘ 𝑎 ) vts 𝑁 ) ‘ 𝑥 ) · ( exp ‘ ( ( i · ( 2 · π ) ) · ( - 𝑁 · 𝑥 ) ) ) ) d 𝑥 ) |