| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dihmeetc.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
dihmeetc.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
dihmeetc.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
dihmeetc.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 5 |
|
dihmeetc.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) |
| 7 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝐾 ∈ HL ) |
| 8 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝐾 ∈ Lat ) |
| 9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑋 ∈ 𝐵 ) |
| 10 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑌 ∈ 𝐵 ) |
| 11 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 13 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑊 ∈ 𝐻 ) |
| 14 |
1 4
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑊 ∈ 𝐵 ) |
| 16 |
1 2 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ↔ ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 17 |
8 12 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ↔ ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 18 |
6 17
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑊 ) = ( 𝑋 ∧ 𝑌 ) ) |
| 19 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 20 |
7 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝐾 ∈ OL ) |
| 21 |
1 3
|
latmassOLD |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑊 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) |
| 22 |
20 9 10 15 21
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( 𝑋 ∧ 𝑌 ) ∧ 𝑊 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) |
| 23 |
18 22
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) |
| 24 |
23
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( 𝐼 ‘ ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 25 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 26 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 27 |
8 10 15 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ) |
| 28 |
1 2 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 29 |
8 10 15 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) |
| 30 |
1 2 3 4 5
|
dihmeetbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ∧ ( ( 𝑌 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∧ 𝑊 ) ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 31 |
25 9 27 29 30
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ ( 𝑌 ∧ 𝑊 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) ) |
| 32 |
1 2
|
latref |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑊 ∈ 𝐵 ) → 𝑊 ≤ 𝑊 ) |
| 33 |
8 15 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → 𝑊 ≤ 𝑊 ) |
| 34 |
1 2 3 4 5
|
dihmeetbN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑊 ∈ 𝐵 ∧ 𝑊 ≤ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 35 |
25 10 15 33 34
|
syl112anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) = ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 36 |
35
|
ineq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ ( 𝑌 ∧ 𝑊 ) ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) ) |
| 37 |
24 31 36
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) ) |
| 38 |
|
inass |
⊢ ( ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ∩ ( 𝐼 ‘ 𝑊 ) ) = ( ( 𝐼 ‘ 𝑋 ) ∩ ( ( 𝐼 ‘ 𝑌 ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |
| 39 |
37 38
|
eqtr4di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ 𝑊 ) → ( 𝐼 ‘ ( 𝑋 ∧ 𝑌 ) ) = ( ( ( 𝐼 ‘ 𝑋 ) ∩ ( 𝐼 ‘ 𝑌 ) ) ∩ ( 𝐼 ‘ 𝑊 ) ) ) |