| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjxun.1 |
⊢ ( 𝑥 = 𝑦 → 𝐶 = 𝐷 ) |
| 2 |
|
disjel |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝑦 ∈ 𝐵 ) ) |
| 5 |
2 4
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝐵 ) ) |
| 6 |
5
|
con2d |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ 𝐵 → ¬ 𝑥 = 𝑦 ) ) |
| 7 |
6
|
impr |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ¬ 𝑥 = 𝑦 ) |
| 8 |
|
biorf |
⊢ ( ¬ 𝑥 = 𝑦 → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 10 |
9
|
bicomd |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 11 |
10
|
2ralbidva |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 12 |
11
|
anbi2d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 13 |
|
ralunb |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 14 |
13
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 16 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝐴 ∪ 𝐵 ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑤 |
| 18 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐶 |
| 19 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐶 |
| 20 |
18 19
|
nfin |
⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 21 |
20
|
nfeq1 |
⊢ Ⅎ 𝑥 ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ |
| 22 |
17 21
|
nfor |
⊢ Ⅎ 𝑥 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 23 |
16 22
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) |
| 24 |
|
equequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐷 |
| 27 |
25 26 1
|
csbhypf |
⊢ ( 𝑤 = 𝑦 → ⦋ 𝑤 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 28 |
27
|
ineq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 29 |
28
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 30 |
24 29
|
orbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 31 |
30
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 32 |
|
equequ1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) |
| 33 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ) |
| 34 |
33
|
ineq1d |
⊢ ( 𝑥 = 𝑧 → ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 35 |
34
|
eqeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 36 |
32 35
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 37 |
36
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑤 ∨ ( 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 38 |
31 37
|
bitr3id |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 39 |
15 23 38
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 40 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 41 |
14 39 40
|
3bitr3i |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 42 |
1
|
disjor |
⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 43 |
42
|
anbi1i |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 44 |
12 41 43
|
3bitr4g |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 45 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) |
| 46 |
|
equequ2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝑥 ↔ 𝑧 = 𝑤 ) ) |
| 47 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐶 = ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) |
| 48 |
47
|
ineq2d |
⊢ ( 𝑥 = 𝑤 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( 𝑥 = 𝑤 → ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ↔ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 50 |
46 49
|
orbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 51 |
45 22 50
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 52 |
|
equequ1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑦 = 𝑥 ) ) |
| 53 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
| 54 |
52 53
|
bitrdi |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑥 ↔ 𝑥 = 𝑦 ) ) |
| 55 |
25 26 1
|
csbhypf |
⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
| 56 |
55
|
ineq1d |
⊢ ( 𝑧 = 𝑦 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( 𝐷 ∩ 𝐶 ) ) |
| 57 |
|
incom |
⊢ ( 𝐷 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) |
| 58 |
56 57
|
eqtrdi |
⊢ ( 𝑧 = 𝑦 → ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) ) |
| 59 |
58
|
eqeq1d |
⊢ ( 𝑧 = 𝑦 → ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ↔ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 60 |
54 59
|
orbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 61 |
60
|
ralbidv |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = 𝑥 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 62 |
51 61
|
bitr3id |
⊢ ( 𝑧 = 𝑦 → ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 63 |
62
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 64 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑥 ∈ 𝐴 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 65 |
63 64
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑦 ∨ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 66 |
65 11
|
bitrid |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 67 |
66
|
anbi1d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) ) |
| 68 |
|
ralunb |
⊢ ( ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 69 |
68
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 70 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 71 |
69 70
|
bitri |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐴 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 72 |
|
disjors |
⊢ ( Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 73 |
72
|
anbi2ci |
⊢ ( ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 74 |
67 71 73
|
3bitr4g |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 75 |
44 74
|
anbi12d |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) ) |
| 76 |
|
disjors |
⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ∀ 𝑧 ∈ ( 𝐴 ∪ 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) |
| 77 |
|
ralunb |
⊢ ( ∀ 𝑧 ∈ ( 𝐴 ∪ 𝐵 ) ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 78 |
76 77
|
bitri |
⊢ ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ ( 𝐴 ∪ 𝐵 ) ( 𝑧 = 𝑤 ∨ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝑤 / 𝑥 ⦌ 𝐶 ) = ∅ ) ) ) |
| 79 |
|
df-3an |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) |
| 80 |
|
anandir |
⊢ ( ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 81 |
79 80
|
bitri |
⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ↔ ( ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ∧ ( Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |
| 82 |
75 78 81
|
3bitr4g |
⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( Disj 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ( Disj 𝑥 ∈ 𝐴 𝐶 ∧ Disj 𝑥 ∈ 𝐵 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝐶 ∩ 𝐷 ) = ∅ ) ) ) |