Metamath Proof Explorer


Theorem disjxun

Description: The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjxun.1 x = y C = D
Assertion disjxun A B = Disj x A B C Disj x A C Disj x B C x A y B C D =

Proof

Step Hyp Ref Expression
1 disjxun.1 x = y C = D
2 disjel A B = x A ¬ x B
3 eleq1w x = y x B y B
4 3 notbid x = y ¬ x B ¬ y B
5 2 4 syl5ibcom A B = x A x = y ¬ y B
6 5 con2d A B = x A y B ¬ x = y
7 6 impr A B = x A y B ¬ x = y
8 biorf ¬ x = y C D = x = y C D =
9 7 8 syl A B = x A y B C D = x = y C D =
10 9 bicomd A B = x A y B x = y C D = C D =
11 10 2ralbidva A B = x A y B x = y C D = x A y B C D =
12 11 anbi2d A B = x A y A x = y C D = x A y B x = y C D = x A y A x = y C D = x A y B C D =
13 ralunb y A B x = y C D = y A x = y C D = y B x = y C D =
14 13 ralbii x A y A B x = y C D = x A y A x = y C D = y B x = y C D =
15 nfv z y A B x = y C D =
16 nfcv _ x A B
17 nfv x z = w
18 nfcsb1v _ x z / x C
19 nfcsb1v _ x w / x C
20 18 19 nfin _ x z / x C w / x C
21 20 nfeq1 x z / x C w / x C =
22 17 21 nfor x z = w z / x C w / x C =
23 16 22 nfralw x w A B z = w z / x C w / x C =
24 equequ2 w = y x = w x = y
25 nfcv _ x y
26 nfcv _ x D
27 25 26 1 csbhypf w = y w / x C = D
28 27 ineq2d w = y C w / x C = C D
29 28 eqeq1d w = y C w / x C = C D =
30 24 29 orbi12d w = y x = w C w / x C = x = y C D =
31 30 cbvralvw w A B x = w C w / x C = y A B x = y C D =
32 equequ1 x = z x = w z = w
33 csbeq1a x = z C = z / x C
34 33 ineq1d x = z C w / x C = z / x C w / x C
35 34 eqeq1d x = z C w / x C = z / x C w / x C =
36 32 35 orbi12d x = z x = w C w / x C = z = w z / x C w / x C =
37 36 ralbidv x = z w A B x = w C w / x C = w A B z = w z / x C w / x C =
38 31 37 bitr3id x = z y A B x = y C D = w A B z = w z / x C w / x C =
39 15 23 38 cbvralw x A y A B x = y C D = z A w A B z = w z / x C w / x C =
40 r19.26 x A y A x = y C D = y B x = y C D = x A y A x = y C D = x A y B x = y C D =
41 14 39 40 3bitr3i z A w A B z = w z / x C w / x C = x A y A x = y C D = x A y B x = y C D =
42 1 disjor Disj x A C x A y A x = y C D =
43 42 anbi1i Disj x A C x A y B C D = x A y A x = y C D = x A y B C D =
44 12 41 43 3bitr4g A B = z A w A B z = w z / x C w / x C = Disj x A C x A y B C D =
45 nfv w z = x z / x C C =
46 equequ2 x = w z = x z = w
47 csbeq1a x = w C = w / x C
48 47 ineq2d x = w z / x C C = z / x C w / x C
49 48 eqeq1d x = w z / x C C = z / x C w / x C =
50 46 49 orbi12d x = w z = x z / x C C = z = w z / x C w / x C =
51 45 22 50 cbvralw x A z = x z / x C C = w A z = w z / x C w / x C =
52 equequ1 z = y z = x y = x
53 equcom y = x x = y
54 52 53 bitrdi z = y z = x x = y
55 25 26 1 csbhypf z = y z / x C = D
56 55 ineq1d z = y z / x C C = D C
57 incom D C = C D
58 56 57 eqtrdi z = y z / x C C = C D
59 58 eqeq1d z = y z / x C C = C D =
60 54 59 orbi12d z = y z = x z / x C C = x = y C D =
61 60 ralbidv z = y x A z = x z / x C C = x A x = y C D =
62 51 61 bitr3id z = y w A z = w z / x C w / x C = x A x = y C D =
63 62 cbvralvw z B w A z = w z / x C w / x C = y B x A x = y C D =
64 ralcom y B x A x = y C D = x A y B x = y C D =
65 63 64 bitri z B w A z = w z / x C w / x C = x A y B x = y C D =
66 65 11 bitrid A B = z B w A z = w z / x C w / x C = x A y B C D =
67 66 anbi1d A B = z B w A z = w z / x C w / x C = z B w B z = w z / x C w / x C = x A y B C D = z B w B z = w z / x C w / x C =
68 ralunb w A B z = w z / x C w / x C = w A z = w z / x C w / x C = w B z = w z / x C w / x C =
69 68 ralbii z B w A B z = w z / x C w / x C = z B w A z = w z / x C w / x C = w B z = w z / x C w / x C =
70 r19.26 z B w A z = w z / x C w / x C = w B z = w z / x C w / x C = z B w A z = w z / x C w / x C = z B w B z = w z / x C w / x C =
71 69 70 bitri z B w A B z = w z / x C w / x C = z B w A z = w z / x C w / x C = z B w B z = w z / x C w / x C =
72 disjors Disj x B C z B w B z = w z / x C w / x C =
73 72 anbi2ci Disj x B C x A y B C D = x A y B C D = z B w B z = w z / x C w / x C =
74 67 71 73 3bitr4g A B = z B w A B z = w z / x C w / x C = Disj x B C x A y B C D =
75 44 74 anbi12d A B = z A w A B z = w z / x C w / x C = z B w A B z = w z / x C w / x C = Disj x A C x A y B C D = Disj x B C x A y B C D =
76 disjors Disj x A B C z A B w A B z = w z / x C w / x C =
77 ralunb z A B w A B z = w z / x C w / x C = z A w A B z = w z / x C w / x C = z B w A B z = w z / x C w / x C =
78 76 77 bitri Disj x A B C z A w A B z = w z / x C w / x C = z B w A B z = w z / x C w / x C =
79 df-3an Disj x A C Disj x B C x A y B C D = Disj x A C Disj x B C x A y B C D =
80 anandir Disj x A C Disj x B C x A y B C D = Disj x A C x A y B C D = Disj x B C x A y B C D =
81 79 80 bitri Disj x A C Disj x B C x A y B C D = Disj x A C x A y B C D = Disj x B C x A y B C D =
82 75 78 81 3bitr4g A B = Disj x A B C Disj x A C Disj x B C x A y B C D =