Step |
Hyp |
Ref |
Expression |
1 |
|
sxbrsiga.0 |
⊢ 𝐽 = ( topGen ‘ ran (,) ) |
2 |
|
dya2ioc.1 |
⊢ 𝐼 = ( 𝑥 ∈ ℤ , 𝑛 ∈ ℤ ↦ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
3 |
|
ovex |
⊢ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ V |
4 |
2 3
|
elrnmpo |
⊢ ( 𝑑 ∈ ran 𝐼 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
5 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
6 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → -∞ ∈ ℝ* ) |
8 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
9 |
8
|
zred |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑥 ∈ ℝ ) |
10 |
|
2rp |
⊢ 2 ∈ ℝ+ |
11 |
10
|
a1i |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℝ+ ) |
12 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) |
13 |
11 12
|
rpexpcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
14 |
9 13
|
rerpdivcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
16 |
|
1red |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 1 ∈ ℝ ) |
17 |
9 16
|
readdcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑥 + 1 ) ∈ ℝ ) |
18 |
17 13
|
rerpdivcld |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
19 |
18
|
rexrd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) |
20 |
|
mnflt |
⊢ ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ → -∞ < ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) |
21 |
14 20
|
syl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → -∞ < ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) |
22 |
|
difioo |
⊢ ( ( ( -∞ ∈ ℝ* ∧ ( 𝑥 / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ∧ ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ∈ ℝ* ) ∧ -∞ < ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) → ( ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∖ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
23 |
7 15 19 21 22
|
syl31anc |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∖ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ) = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) |
24 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
25 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
26 |
24 25
|
ax-mp |
⊢ 𝔅ℝ ∈ ∪ ran sigAlgebra |
27 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
28 |
|
iooretop |
⊢ ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ ( topGen ‘ ran (,) ) |
29 |
|
elsigagen |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ ( topGen ‘ ran (,) ) ) → ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
30 |
27 28 29
|
mp2an |
⊢ ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
31 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
32 |
30 31
|
eleqtrri |
⊢ ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ |
33 |
|
iooretop |
⊢ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ ( topGen ‘ ran (,) ) |
34 |
|
elsigagen |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ ( topGen ‘ ran (,) ) ) → ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
35 |
27 33 34
|
mp2an |
⊢ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
36 |
35 31
|
eleqtrri |
⊢ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ |
37 |
|
difelsiga |
⊢ ( ( 𝔅ℝ ∈ ∪ ran sigAlgebra ∧ ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ ∧ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ ) → ( ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∖ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ) ∈ 𝔅ℝ ) |
38 |
26 32 36 37
|
mp3an |
⊢ ( ( -∞ (,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∖ ( -∞ (,) ( 𝑥 / ( 2 ↑ 𝑛 ) ) ) ) ∈ 𝔅ℝ |
39 |
23 38
|
eqeltrrdi |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ∈ 𝔅ℝ ) |
41 |
5 40
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) ) → 𝑑 ∈ 𝔅ℝ ) |
42 |
41
|
ex |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ∈ 𝔅ℝ ) ) |
43 |
42
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝑑 = ( ( 𝑥 / ( 2 ↑ 𝑛 ) ) [,) ( ( 𝑥 + 1 ) / ( 2 ↑ 𝑛 ) ) ) → 𝑑 ∈ 𝔅ℝ ) |
44 |
4 43
|
sylbi |
⊢ ( 𝑑 ∈ ran 𝐼 → 𝑑 ∈ 𝔅ℝ ) |
45 |
44
|
ssriv |
⊢ ran 𝐼 ⊆ 𝔅ℝ |