| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efadd.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐴 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 2 |  | efadd.2 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐵 ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 3 |  | efadd.3 | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( 𝐴  +  𝐵 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 4 |  | efadd.4 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | efadd.5 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 4 5 | addcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  ℂ ) | 
						
							| 7 | 3 | efcvg | ⊢ ( ( 𝐴  +  𝐵 )  ∈  ℂ  →  seq 0 (  +  ,  𝐻 )  ⇝  ( exp ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( exp ‘ ( 𝐴  +  𝐵 ) ) ) | 
						
							| 9 | 1 | eftval | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝐹 ‘ 𝑗 )  =  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  =  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 11 |  | absexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( 𝐴 ↑ 𝑗 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) | 
						
							| 12 | 4 11 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( 𝐴 ↑ 𝑗 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) | 
						
							| 13 |  | faccl | ⊢ ( 𝑗  ∈  ℕ0  →  ( ! ‘ 𝑗 )  ∈  ℕ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ! ‘ 𝑗 )  ∈  ℕ ) | 
						
							| 15 |  | nnre | ⊢ ( ( ! ‘ 𝑗 )  ∈  ℕ  →  ( ! ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 16 |  | nnnn0 | ⊢ ( ( ! ‘ 𝑗 )  ∈  ℕ  →  ( ! ‘ 𝑗 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | nn0ge0d | ⊢ ( ( ! ‘ 𝑗 )  ∈  ℕ  →  0  ≤  ( ! ‘ 𝑗 ) ) | 
						
							| 18 | 15 17 | absidd | ⊢ ( ( ! ‘ 𝑗 )  ∈  ℕ  →  ( abs ‘ ( ! ‘ 𝑗 ) )  =  ( ! ‘ 𝑗 ) ) | 
						
							| 19 | 14 18 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( ! ‘ 𝑗 ) )  =  ( ! ‘ 𝑗 ) ) | 
						
							| 20 | 12 19 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) )  /  ( abs ‘ ( ! ‘ 𝑗 ) ) )  =  ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 21 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 22 | 4 21 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 23 | 14 | nncnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ! ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 24 | 14 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ! ‘ 𝑗 )  ≠  0 ) | 
						
							| 25 | 22 23 24 | absdivd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) )  =  ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) )  /  ( abs ‘ ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 27 | 26 | eftval | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 29 | 20 25 28 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( abs ‘ ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 30 |  | eftcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 31 | 4 30 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 32 | 2 | eftval | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 34 |  | eftcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 35 | 5 34 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 36 | 3 | eftval | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝐻 ‘ 𝑘 )  =  ( ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  ( ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 39 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 41 |  | binom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 42 | 38 39 40 41 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 44 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 45 |  | faccl | ⊢ ( 𝑘  ∈  ℕ0  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℕ ) | 
						
							| 47 | 46 | nncnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 48 |  | bccl2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  ( 𝑘 C 𝑗 )  ∈  ℕ ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘 C 𝑗 )  ∈  ℕ ) | 
						
							| 50 | 49 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘 C 𝑗 )  ∈  ℂ ) | 
						
							| 51 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 52 |  | fznn0sub | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  ( 𝑘  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 54 | 51 53 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 55 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 56 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 58 | 55 57 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐵 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 59 | 54 58 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 60 | 50 59 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  ∈  ℂ ) | 
						
							| 61 | 46 | nnne0d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 62 | 44 47 60 61 | fsumdivc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 63 | 51 57 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 64 | 57 13 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ 𝑗 )  ∈  ℕ ) | 
						
							| 65 | 64 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 66 | 64 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ 𝑗 )  ≠  0 ) | 
						
							| 67 | 63 65 66 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 68 | 2 | eftval | ⊢ ( ( 𝑘  −  𝑗 )  ∈  ℕ0  →  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  =  ( ( 𝐵 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 69 | 53 68 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  =  ( ( 𝐵 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 70 | 55 53 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐵 ↑ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 71 |  | faccl | ⊢ ( ( 𝑘  −  𝑗 )  ∈  ℕ0  →  ( ! ‘ ( 𝑘  −  𝑗 ) )  ∈  ℕ ) | 
						
							| 72 | 53 71 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ ( 𝑘  −  𝑗 ) )  ∈  ℕ ) | 
						
							| 73 | 72 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 74 | 72 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ ( 𝑘  −  𝑗 ) )  ≠  0 ) | 
						
							| 75 | 70 73 74 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝐵 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 76 | 69 75 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 77 | 67 76 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( ! ‘ 𝑗 )  =  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 80 | 78 79 | oveq12d | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  =  ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) | 
						
							| 81 |  | oveq2 | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( 𝑘  −  𝑗 )  =  ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  =  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) | 
						
							| 83 | 80 82 | oveq12d | ⊢ ( 𝑗  =  ( ( 0  +  𝑘 )  −  𝑚 )  →  ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  =  ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) ) | 
						
							| 84 | 77 83 | fsumrev2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  =  Σ 𝑚  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) ) | 
						
							| 85 | 2 | eftval | ⊢ ( 𝑗  ∈  ℕ0  →  ( 𝐺 ‘ 𝑗 )  =  ( ( 𝐵 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 86 | 57 85 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐺 ‘ 𝑗 )  =  ( ( 𝐵 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( 𝐺 ‘ 𝑗 ) )  =  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 88 | 72 64 | nnmulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) )  ∈  ℕ ) | 
						
							| 89 | 88 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 90 | 88 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) )  ≠  0 ) | 
						
							| 91 | 59 89 90 | divrec2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  =  ( ( 1  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 92 | 54 73 58 65 74 66 | divmuldivd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) )  =  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 93 |  | bcval2 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  ( 𝑘 C 𝑗 )  =  ( ( ! ‘ 𝑘 )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘 C 𝑗 )  =  ( ( ! ‘ 𝑘 )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 96 | 47 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 97 | 61 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ 𝑘 )  ≠  0 ) | 
						
							| 98 | 96 89 96 90 97 | divdiv32d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  ( ( ( ! ‘ 𝑘 )  /  ( ! ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 99 | 96 97 | dividd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ! ‘ 𝑘 )  /  ( ! ‘ 𝑘 ) )  =  1 ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ( ! ‘ 𝑘 ) )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  =  ( 1  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 101 | 98 100 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( ! ‘ 𝑘 )  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  ( 1  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 102 | 95 101 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  =  ( 1  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 103 | 102 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  =  ( ( 1  /  ( ( ! ‘ ( 𝑘  −  𝑗 ) )  ·  ( ! ‘ 𝑗 ) ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 104 | 91 92 103 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  =  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( ( 𝐵 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) ) | 
						
							| 105 | 87 104 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( 𝐺 ‘ 𝑗 ) )  =  ( ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 106 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 107 | 106 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 108 | 107 | addlidd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 0  +  𝑘 )  =  𝑘 ) | 
						
							| 109 | 108 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 0  +  𝑘 )  −  𝑗 )  =  ( 𝑘  −  𝑗 ) ) | 
						
							| 110 | 109 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( 𝐴 ↑ ( 𝑘  −  𝑗 ) ) ) | 
						
							| 111 | 109 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( ! ‘ ( 𝑘  −  𝑗 ) ) ) | 
						
							| 112 | 110 111 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  =  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 113 | 109 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( 𝑘  −  ( 𝑘  −  𝑗 ) ) ) | 
						
							| 114 |  | nn0cn | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℂ ) | 
						
							| 115 | 57 114 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝑗  ∈  ℂ ) | 
						
							| 116 | 107 115 | nncand | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  ( 𝑘  −  𝑗 ) )  =  𝑗 ) | 
						
							| 117 | 113 116 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) )  =  𝑗 ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) )  =  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 119 | 112 118 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) ) )  =  ( ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  /  ( ! ‘ ( 𝑘  −  𝑗 ) ) )  ·  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 120 | 50 59 96 97 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  ( ( ( 𝑘 C 𝑗 )  /  ( ! ‘ 𝑘 ) )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) ) ) | 
						
							| 121 | 105 119 120 | 3eqtr4rd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) ) ) ) | 
						
							| 122 | 121 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) ) ) ) | 
						
							| 123 |  | oveq2 | ⊢ ( 𝑗  =  𝑚  →  ( ( 0  +  𝑘 )  −  𝑗 )  =  ( ( 0  +  𝑘 )  −  𝑚 ) ) | 
						
							| 124 | 123 | oveq2d | ⊢ ( 𝑗  =  𝑚  →  ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 125 | 123 | fveq2d | ⊢ ( 𝑗  =  𝑚  →  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 126 | 124 125 | oveq12d | ⊢ ( 𝑗  =  𝑚  →  ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  =  ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) | 
						
							| 127 | 123 | oveq2d | ⊢ ( 𝑗  =  𝑚  →  ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) )  =  ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) | 
						
							| 128 | 127 | fveq2d | ⊢ ( 𝑗  =  𝑚  →  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) )  =  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) | 
						
							| 129 | 126 128 | oveq12d | ⊢ ( 𝑗  =  𝑚  →  ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) ) )  =  ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) ) | 
						
							| 130 | 129 | cbvsumv | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑗 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑗 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑗 ) ) ) )  =  Σ 𝑚  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) | 
						
							| 131 | 122 130 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  Σ 𝑚  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0  +  𝑘 )  −  𝑚 ) )  /  ( ! ‘ ( ( 0  +  𝑘 )  −  𝑚 ) ) )  ·  ( 𝐺 ‘ ( 𝑘  −  ( ( 0  +  𝑘 )  −  𝑚 ) ) ) ) ) | 
						
							| 132 | 84 131 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 133 | 62 132 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 )  ·  ( ( 𝐴 ↑ ( 𝑘  −  𝑗 ) )  ·  ( 𝐵 ↑ 𝑗 ) ) )  /  ( ! ‘ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 134 | 43 133 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝐴  +  𝐵 ) ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 135 | 37 134 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 136 | 4 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 137 | 136 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 138 | 26 | efcllem | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℂ  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 139 | 137 138 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) )  ∈  dom   ⇝  ) | 
						
							| 140 | 2 | efcllem | ⊢ ( 𝐵  ∈  ℂ  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 141 | 5 140 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 142 | 10 29 31 33 35 135 139 141 | mertens | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( Σ 𝑗  ∈  ℕ0 ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  Σ 𝑘  ∈  ℕ0 ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 143 |  | efval | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 144 | 4 143 | syl | ⊢ ( 𝜑  →  ( exp ‘ 𝐴 )  =  Σ 𝑗  ∈  ℕ0 ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) ) ) | 
						
							| 145 |  | efval | ⊢ ( 𝐵  ∈  ℂ  →  ( exp ‘ 𝐵 )  =  Σ 𝑘  ∈  ℕ0 ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 146 | 5 145 | syl | ⊢ ( 𝜑  →  ( exp ‘ 𝐵 )  =  Σ 𝑘  ∈  ℕ0 ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) | 
						
							| 147 | 144 146 | oveq12d | ⊢ ( 𝜑  →  ( ( exp ‘ 𝐴 )  ·  ( exp ‘ 𝐵 ) )  =  ( Σ 𝑗  ∈  ℕ0 ( ( 𝐴 ↑ 𝑗 )  /  ( ! ‘ 𝑗 ) )  ·  Σ 𝑘  ∈  ℕ0 ( ( 𝐵 ↑ 𝑘 )  /  ( ! ‘ 𝑘 ) ) ) ) | 
						
							| 148 | 142 147 | breqtrrd | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( ( exp ‘ 𝐴 )  ·  ( exp ‘ 𝐵 ) ) ) | 
						
							| 149 |  | climuni | ⊢ ( ( seq 0 (  +  ,  𝐻 )  ⇝  ( exp ‘ ( 𝐴  +  𝐵 ) )  ∧  seq 0 (  +  ,  𝐻 )  ⇝  ( ( exp ‘ 𝐴 )  ·  ( exp ‘ 𝐵 ) ) )  →  ( exp ‘ ( 𝐴  +  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  ·  ( exp ‘ 𝐵 ) ) ) | 
						
							| 150 | 8 148 149 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐴  +  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  ·  ( exp ‘ 𝐵 ) ) ) |