| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mertens.1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 2 |  | mertens.2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 3 |  | mertens.3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | mertens.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 5 |  | mertens.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 |  | mertens.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 7 |  | mertens.7 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐾 )  ∈  dom   ⇝  ) | 
						
							| 8 |  | mertens.8 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 9 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 10 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 11 |  | seqex | ⊢ seq 0 (  +  ,  𝐻 )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ∈  V ) | 
						
							| 13 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 0 ... 𝑘 )  ∈  Fin ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝜑 ) | 
						
							| 15 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 16 | 14 15 3 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑖  =  ( 𝑘  −  𝑗 )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) | 
						
							| 18 | 17 | eleq1d | ⊢ ( 𝑖  =  ( 𝑘  −  𝑗 )  →  ( ( 𝐺 ‘ 𝑖 )  ∈  ℂ  ↔  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) ) | 
						
							| 19 | 4 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑘  =  𝑖  →  ( ( 𝐺 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐺 ‘ 𝑖 )  ∈  ℂ ) ) | 
						
							| 23 | 22 | cbvralvw | ⊢ ( ∀ 𝑘  ∈  ℕ0 ( 𝐺 ‘ 𝑘 )  ∈  ℂ  ↔  ∀ 𝑖  ∈  ℕ0 ( 𝐺 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 24 | 20 23 | sylib | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ0 ( 𝐺 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝐺 ‘ 𝑖 )  ∈  ℂ ) | 
						
							| 26 |  | fznn0sub | ⊢ ( 𝑗  ∈  ( 0 ... 𝑘 )  →  ( 𝑘  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝑘  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 28 | 18 25 27 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 29 | 16 28 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑘 ) )  →  ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 30 | 13 29 | fsumcl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 31 | 6 30 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 32 | 9 10 31 | serf | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 ) : ℕ0 ⟶ ℂ ) | 
						
							| 33 | 32 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 34 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 35 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 36 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑗  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 37 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 38 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 39 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 40 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  seq 0 (  +  ,  𝐾 )  ∈  dom   ⇝  ) | 
						
							| 41 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑙  =  𝑘  →  ( 𝐺 ‘ 𝑙 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 44 | 43 | cbvsumv | ⊢ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑘 ) | 
						
							| 45 |  | fvoveq1 | ⊢ ( 𝑖  =  𝑛  →  ( ℤ≥ ‘ ( 𝑖  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 46 | 45 | sumeq1d | ⊢ ( 𝑖  =  𝑛  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 47 | 44 46 | eqtrid | ⊢ ( 𝑖  =  𝑛  →  Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝑖  =  𝑛  →  ( abs ‘ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 ) )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 49 | 48 | eqeq2d | ⊢ ( 𝑖  =  𝑛  →  ( 𝑢  =  ( abs ‘ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 ) )  ↔  𝑢  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑖  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑢  =  ( abs ‘ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑢  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 51 |  | eqeq1 | ⊢ ( 𝑢  =  𝑧  →  ( 𝑢  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ↔  𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 52 | 51 | rexbidv | ⊢ ( 𝑢  =  𝑧  →  ( ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑢  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 53 | 50 52 | bitrid | ⊢ ( 𝑢  =  𝑧  →  ( ∃ 𝑖  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑢  =  ( abs ‘ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 54 | 53 | cbvabv | ⊢ { 𝑢  ∣  ∃ 𝑖  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑢  =  ( abs ‘ Σ 𝑙  ∈  ( ℤ≥ ‘ ( 𝑖  +  1 ) ) ( 𝐺 ‘ 𝑙 ) ) }  =  { 𝑧  ∣  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) } | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐾 ‘ 𝑖 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 56 | 55 | cbvsumv | ⊢ Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  =  Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 ) | 
						
							| 57 | 56 | oveq1i | ⊢ ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 )  =  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) | 
						
							| 58 | 57 | oveq2i | ⊢ ( ( 𝑥  /  2 )  /  ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 ) )  =  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) | 
						
							| 59 | 58 | breq2i | ⊢ ( ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑖  =  𝑘  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 61 | 60 | cbvsumv | ⊢ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑘 ) | 
						
							| 62 |  | fvoveq1 | ⊢ ( 𝑢  =  𝑛  →  ( ℤ≥ ‘ ( 𝑢  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 63 | 62 | sumeq1d | ⊢ ( 𝑢  =  𝑛  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 64 | 61 63 | eqtrid | ⊢ ( 𝑢  =  𝑛  →  Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( 𝑢  =  𝑛  →  ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 66 | 65 | breq1d | ⊢ ( 𝑢  =  𝑛  →  ( ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 67 | 59 66 | bitrid | ⊢ ( 𝑢  =  𝑛  →  ( ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 68 | 67 | cbvralvw | ⊢ ( ∀ 𝑢  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 ) )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) | 
						
							| 69 | 68 | anbi2i | ⊢ ( ( 𝑠  ∈  ℕ  ∧  ∀ 𝑢  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑖  ∈  ( ℤ≥ ‘ ( 𝑢  +  1 ) ) ( 𝐺 ‘ 𝑖 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑖  ∈  ℕ0 ( 𝐾 ‘ 𝑖 )  +  1 ) ) )  ↔  ( 𝑠  ∈  ℕ  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝑥  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 70 | 34 35 36 37 38 39 40 41 42 54 69 | mertenslem2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) | 
						
							| 71 |  | eluznn0 | ⊢ ( ( 𝑦  ∈  ℕ0  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 72 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 0 ... 𝑚 )  ∈  Fin ) | 
						
							| 73 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 74 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑚 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 76 | 9 10 4 5 8 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 𝐵  ∈  ℂ ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  Σ 𝑘  ∈  ℕ0 𝐵  ∈  ℂ ) | 
						
							| 78 | 1 3 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 79 | 77 78 | mulcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 80 | 73 75 79 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  ∈  ℂ ) | 
						
							| 81 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 0 ... ( 𝑚  −  𝑗 ) )  ∈  Fin ) | 
						
							| 82 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  𝜑 ) | 
						
							| 83 | 74 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 84 | 82 83 3 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 85 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 86 | 85 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 87 | 82 86 19 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 88 | 84 87 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 89 | 81 88 | fsumcl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 90 | 72 80 89 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑗  ∈  ( 0 ... 𝑚 ) Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 91 | 73 75 3 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 92 | 76 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ℕ0 𝐵  ∈  ℂ ) | 
						
							| 93 | 81 87 | fsumcl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 94 | 91 92 93 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐴  ·  ( Σ 𝑘  ∈  ℕ0 𝐵  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 )  −  ( 𝐴  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 95 |  | eqid | ⊢ ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) )  =  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) | 
						
							| 96 |  | fznn0sub | ⊢ ( 𝑗  ∈  ( 0 ... 𝑚 )  →  ( 𝑚  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝑚  −  𝑗 )  ∈  ℕ0 ) | 
						
							| 98 |  | peano2nn0 | ⊢ ( ( 𝑚  −  𝑗 )  ∈  ℕ0  →  ( ( 𝑚  −  𝑗 )  +  1 )  ∈  ℕ0 ) | 
						
							| 99 | 97 98 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝑚  −  𝑗 )  +  1 )  ∈  ℕ0 ) | 
						
							| 100 | 99 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝑚  −  𝑗 )  +  1 )  ∈  ℤ ) | 
						
							| 101 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) )  →  𝜑 ) | 
						
							| 102 |  | eluznn0 | ⊢ ( ( ( ( 𝑚  −  𝑗 )  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 103 | 99 102 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 104 | 101 103 4 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 105 | 101 103 5 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 106 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 107 | 73 4 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 108 | 73 5 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 109 | 107 108 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 110 | 9 99 109 | iserex | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝   ↔  seq ( ( 𝑚  −  𝑗 )  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) ) | 
						
							| 111 | 106 110 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  seq ( ( 𝑚  −  𝑗 )  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 112 | 95 100 104 105 111 | isumcl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵  ∈  ℂ ) | 
						
							| 113 | 9 95 99 107 108 106 | isumsplit | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ℕ0 𝐵  =  ( Σ 𝑘  ∈  ( 0 ... ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 ) ) 𝐵  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 114 | 97 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝑚  −  𝑗 )  ∈  ℂ ) | 
						
							| 115 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 116 |  | pncan | ⊢ ( ( ( 𝑚  −  𝑗 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 )  =  ( 𝑚  −  𝑗 ) ) | 
						
							| 117 | 114 115 116 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 )  =  ( 𝑚  −  𝑗 ) ) | 
						
							| 118 | 117 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 0 ... ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 ) )  =  ( 0 ... ( 𝑚  −  𝑗 ) ) ) | 
						
							| 119 | 118 | sumeq1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 0 ... ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 ) ) 𝐵  =  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) 𝐵 ) | 
						
							| 120 | 82 86 4 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 121 | 120 | sumeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) 𝐵 ) | 
						
							| 122 | 119 121 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ( 0 ... ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 ) ) 𝐵  =  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( Σ 𝑘  ∈  ( 0 ... ( ( ( 𝑚  −  𝑗 )  +  1 )  −  1 ) ) 𝐵  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 )  =  ( Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 124 | 113 123 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑘  ∈  ℕ0 𝐵  =  ( Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 125 | 93 112 124 | mvrladdd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐴  ·  ( Σ 𝑘  ∈  ℕ0 𝐵  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) )  =  ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 127 | 3 77 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  𝐴 ) ) | 
						
							| 128 | 1 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  𝐴 ) ) | 
						
							| 129 | 127 128 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 130 | 73 75 129 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 131 | 81 91 87 | fsummulc2 | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐴  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 132 | 130 131 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 )  −  ( 𝐴  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 133 | 94 126 132 | 3eqtr3rd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 134 | 133 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 135 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 136 | 135 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 137 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 138 |  | ovex | ⊢ ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  ∈  V | 
						
							| 139 | 136 137 138 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 140 | 75 139 | syl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑗  ∈  ( 0 ... 𝑚 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑗 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 141 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 142 | 141 9 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 143 | 140 142 80 | fsumser | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  =  ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 ) ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 145 | 144 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴  ·  ( 𝐺 ‘ 𝑛 ) )  =  ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 146 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑘  −  𝑗 )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) | 
						
							| 147 | 146 | oveq2d | ⊢ ( 𝑛  =  ( 𝑘  −  𝑗 )  →  ( 𝐴  ·  ( 𝐺 ‘ 𝑛 ) )  =  ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 148 | 88 | anasss | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  ( 𝑗  ∈  ( 0 ... 𝑚 )  ∧  𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ) )  →  ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 149 | 145 147 148 | fsum0diag2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑚 ) Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 150 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  𝜑 ) | 
						
							| 151 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑚 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 152 | 151 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 153 | 150 152 6 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 154 | 150 152 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 155 | 153 142 154 | fsumser | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) )  =  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) | 
						
							| 156 | 149 155 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  Σ 𝑗  ∈  ( 0 ... 𝑚 ) Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) | 
						
							| 157 | 143 156 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑗 ) )  −  Σ 𝑗  ∈  ( 0 ... 𝑚 ) Σ 𝑘  ∈  ( 0 ... ( 𝑚  −  𝑗 ) ) ( 𝐴  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) ) | 
						
							| 158 | 90 134 157 | 3eqtr3rd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) | 
						
							| 159 | 158 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  =  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) ) ) | 
						
							| 160 | 159 | breq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 161 | 71 160 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℕ0  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ) )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 162 | 161 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 163 | 162 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ℕ0 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 164 | 163 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ( ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥  ↔  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝑥 ) ) | 
						
							| 166 | 70 165 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ+ )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥 ) | 
						
							| 167 | 166 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ℝ+ ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ ( ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ) ‘ 𝑚 )  −  ( seq 0 (  +  ,  𝐻 ) ‘ 𝑚 ) ) )  <  𝑥 ) | 
						
							| 168 | 1 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑗 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 169 | 2 168 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( abs ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 170 | 9 10 169 78 7 | abscvgcvg | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 171 | 9 10 1 3 170 | isumclim2 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐹 )  ⇝  Σ 𝑗  ∈  ℕ0 𝐴 ) | 
						
							| 172 | 78 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ0 ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 173 |  | fveq2 | ⊢ ( 𝑗  =  𝑚  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 174 | 173 | eleq1d | ⊢ ( 𝑗  =  𝑚  →  ( ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ↔  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) ) | 
						
							| 175 | 174 | rspccva | ⊢ ( ( ∀ 𝑗  ∈  ℕ0 ( 𝐹 ‘ 𝑗 )  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 176 | 172 175 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 177 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 178 | 177 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 179 |  | ovex | ⊢ ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑚 ) )  ∈  V | 
						
							| 180 | 178 137 179 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 181 | 180 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) ‘ 𝑚 )  =  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 182 | 9 10 76 171 176 181 | isermulc2 | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) )  ⇝  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  Σ 𝑗  ∈  ℕ0 𝐴 ) ) | 
						
							| 183 | 9 10 1 3 170 | isumcl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ℕ0 𝐴  ∈  ℂ ) | 
						
							| 184 | 76 183 | mulcomd | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  Σ 𝑗  ∈  ℕ0 𝐴 )  =  ( Σ 𝑗  ∈  ℕ0 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 ) ) | 
						
							| 185 | 182 184 | breqtrd | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( Σ 𝑘  ∈  ℕ0 𝐵  ·  ( 𝐹 ‘ 𝑛 ) ) ) )  ⇝  ( Σ 𝑗  ∈  ℕ0 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 ) ) | 
						
							| 186 | 9 10 12 33 167 185 | 2clim | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐻 )  ⇝  ( Σ 𝑗  ∈  ℕ0 𝐴  ·  Σ 𝑘  ∈  ℕ0 𝐵 ) ) |