| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mertens.1 |  |-  ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) | 
						
							| 2 |  | mertens.2 |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 3 |  | mertens.3 |  |-  ( ( ph /\ j e. NN0 ) -> A e. CC ) | 
						
							| 4 |  | mertens.4 |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 5 |  | mertens.5 |  |-  ( ( ph /\ k e. NN0 ) -> B e. CC ) | 
						
							| 6 |  | mertens.6 |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 7 |  | mertens.7 |  |-  ( ph -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 8 |  | mertens.8 |  |-  ( ph -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 9 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 10 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 11 |  | seqex |  |-  seq 0 ( + , H ) e. _V | 
						
							| 12 | 11 | a1i |  |-  ( ph -> seq 0 ( + , H ) e. _V ) | 
						
							| 13 |  | fzfid |  |-  ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) | 
						
							| 14 |  | simpl |  |-  ( ( ph /\ k e. NN0 ) -> ph ) | 
						
							| 15 |  | elfznn0 |  |-  ( j e. ( 0 ... k ) -> j e. NN0 ) | 
						
							| 16 | 14 15 3 | syl2an |  |-  ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) | 
						
							| 17 |  | fveq2 |  |-  ( i = ( k - j ) -> ( G ` i ) = ( G ` ( k - j ) ) ) | 
						
							| 18 | 17 | eleq1d |  |-  ( i = ( k - j ) -> ( ( G ` i ) e. CC <-> ( G ` ( k - j ) ) e. CC ) ) | 
						
							| 19 | 4 5 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ph -> A. k e. NN0 ( G ` k ) e. CC ) | 
						
							| 21 |  | fveq2 |  |-  ( k = i -> ( G ` k ) = ( G ` i ) ) | 
						
							| 22 | 21 | eleq1d |  |-  ( k = i -> ( ( G ` k ) e. CC <-> ( G ` i ) e. CC ) ) | 
						
							| 23 | 22 | cbvralvw |  |-  ( A. k e. NN0 ( G ` k ) e. CC <-> A. i e. NN0 ( G ` i ) e. CC ) | 
						
							| 24 | 20 23 | sylib |  |-  ( ph -> A. i e. NN0 ( G ` i ) e. CC ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A. i e. NN0 ( G ` i ) e. CC ) | 
						
							| 26 |  | fznn0sub |  |-  ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) | 
						
							| 28 | 18 25 27 | rspcdva |  |-  ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) | 
						
							| 29 | 16 28 | mulcld |  |-  ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A x. ( G ` ( k - j ) ) ) e. CC ) | 
						
							| 30 | 13 29 | fsumcl |  |-  ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) | 
						
							| 31 | 6 30 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) e. CC ) | 
						
							| 32 | 9 10 31 | serf |  |-  ( ph -> seq 0 ( + , H ) : NN0 --> CC ) | 
						
							| 33 | 32 | ffvelcdmda |  |-  ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , H ) ` m ) e. CC ) | 
						
							| 34 | 1 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( F ` j ) = A ) | 
						
							| 35 | 2 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 36 | 3 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ j e. NN0 ) -> A e. CC ) | 
						
							| 37 | 4 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 38 | 5 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> B e. CC ) | 
						
							| 39 | 6 | adantlr |  |-  ( ( ( ph /\ x e. RR+ ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 40 | 7 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 41 | 8 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 43 |  | fveq2 |  |-  ( l = k -> ( G ` l ) = ( G ` k ) ) | 
						
							| 44 | 43 | cbvsumv |  |-  sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) | 
						
							| 45 |  | fvoveq1 |  |-  ( i = n -> ( ZZ>= ` ( i + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) | 
						
							| 46 | 45 | sumeq1d |  |-  ( i = n -> sum_ k e. ( ZZ>= ` ( i + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) | 
						
							| 47 | 44 46 | eqtrid |  |-  ( i = n -> sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) | 
						
							| 48 | 47 | fveq2d |  |-  ( i = n -> ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 49 | 48 | eqeq2d |  |-  ( i = n -> ( u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 50 | 49 | cbvrexvw |  |-  ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 51 |  | eqeq1 |  |-  ( u = z -> ( u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 52 | 51 | rexbidv |  |-  ( u = z -> ( E. n e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 53 | 50 52 | bitrid |  |-  ( u = z -> ( E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 54 | 53 | cbvabv |  |-  { u | E. i e. ( 0 ... ( s - 1 ) ) u = ( abs ` sum_ l e. ( ZZ>= ` ( i + 1 ) ) ( G ` l ) ) } = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } | 
						
							| 55 |  | fveq2 |  |-  ( i = j -> ( K ` i ) = ( K ` j ) ) | 
						
							| 56 | 55 | cbvsumv |  |-  sum_ i e. NN0 ( K ` i ) = sum_ j e. NN0 ( K ` j ) | 
						
							| 57 | 56 | oveq1i |  |-  ( sum_ i e. NN0 ( K ` i ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) | 
						
							| 58 | 57 | oveq2i |  |-  ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) = ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) | 
						
							| 59 | 58 | breq2i |  |-  ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 60 |  | fveq2 |  |-  ( i = k -> ( G ` i ) = ( G ` k ) ) | 
						
							| 61 | 60 | cbvsumv |  |-  sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) | 
						
							| 62 |  | fvoveq1 |  |-  ( u = n -> ( ZZ>= ` ( u + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) | 
						
							| 63 | 62 | sumeq1d |  |-  ( u = n -> sum_ k e. ( ZZ>= ` ( u + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) | 
						
							| 64 | 61 63 | eqtrid |  |-  ( u = n -> sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) | 
						
							| 65 | 64 | fveq2d |  |-  ( u = n -> ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 66 | 65 | breq1d |  |-  ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 67 | 59 66 | bitrid |  |-  ( u = n -> ( ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 68 | 67 | cbvralvw |  |-  ( A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 69 | 68 | anbi2i |  |-  ( ( s e. NN /\ A. u e. ( ZZ>= ` s ) ( abs ` sum_ i e. ( ZZ>= ` ( u + 1 ) ) ( G ` i ) ) < ( ( x / 2 ) / ( sum_ i e. NN0 ( K ` i ) + 1 ) ) ) <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( x / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 70 | 34 35 36 37 38 39 40 41 42 54 69 | mertenslem2 |  |-  ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) | 
						
							| 71 |  | eluznn0 |  |-  ( ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) -> m e. NN0 ) | 
						
							| 72 |  | fzfid |  |-  ( ( ph /\ m e. NN0 ) -> ( 0 ... m ) e. Fin ) | 
						
							| 73 |  | simpll |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ph ) | 
						
							| 74 |  | elfznn0 |  |-  ( j e. ( 0 ... m ) -> j e. NN0 ) | 
						
							| 75 | 74 | adantl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> j e. NN0 ) | 
						
							| 76 | 9 10 4 5 8 | isumcl |  |-  ( ph -> sum_ k e. NN0 B e. CC ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ph /\ j e. NN0 ) -> sum_ k e. NN0 B e. CC ) | 
						
							| 78 | 1 3 | eqeltrd |  |-  ( ( ph /\ j e. NN0 ) -> ( F ` j ) e. CC ) | 
						
							| 79 | 77 78 | mulcld |  |-  ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) | 
						
							| 80 | 73 75 79 | syl2anc |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) e. CC ) | 
						
							| 81 |  | fzfid |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( m - j ) ) e. Fin ) | 
						
							| 82 |  | simplll |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ph ) | 
						
							| 83 | 74 | ad2antlr |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> j e. NN0 ) | 
						
							| 84 | 82 83 3 | syl2anc |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> A e. CC ) | 
						
							| 85 |  | elfznn0 |  |-  ( k e. ( 0 ... ( m - j ) ) -> k e. NN0 ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> k e. NN0 ) | 
						
							| 87 | 82 86 19 | syl2anc |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) e. CC ) | 
						
							| 88 | 84 87 | mulcld |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( A x. ( G ` k ) ) e. CC ) | 
						
							| 89 | 81 88 | fsumcl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) e. CC ) | 
						
							| 90 | 72 80 89 | fsumsub |  |-  ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) | 
						
							| 91 | 73 75 3 | syl2anc |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> A e. CC ) | 
						
							| 92 | 76 | ad2antrr |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B e. CC ) | 
						
							| 93 | 81 87 | fsumcl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) e. CC ) | 
						
							| 94 | 91 92 93 | subdid |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) ) | 
						
							| 95 |  | eqid |  |-  ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) | 
						
							| 96 |  | fznn0sub |  |-  ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) | 
						
							| 98 |  | peano2nn0 |  |-  ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 99 | 97 98 | syl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 100 | 99 | nn0zd |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) | 
						
							| 101 |  | simplll |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) | 
						
							| 102 |  | eluznn0 |  |-  ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 103 | 99 102 | sylan |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 104 | 101 103 4 | syl2anc |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) | 
						
							| 105 | 101 103 5 | syl2anc |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) | 
						
							| 106 | 8 | ad2antrr |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 107 | 73 4 | sylan |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 108 | 73 5 | sylan |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> B e. CC ) | 
						
							| 109 | 107 108 | eqeltrd |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 110 | 9 99 109 | iserex |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) | 
						
							| 111 | 106 110 | mpbid |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) | 
						
							| 112 | 95 100 104 105 111 | isumcl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) | 
						
							| 113 | 9 95 99 107 108 106 | isumsplit |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 114 | 97 | nn0cnd |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. CC ) | 
						
							| 115 |  | ax-1cn |  |-  1 e. CC | 
						
							| 116 |  | pncan |  |-  ( ( ( m - j ) e. CC /\ 1 e. CC ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) | 
						
							| 117 | 114 115 116 | sylancl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( ( m - j ) + 1 ) - 1 ) = ( m - j ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) = ( 0 ... ( m - j ) ) ) | 
						
							| 119 | 118 | sumeq1d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) B ) | 
						
							| 120 | 82 86 4 | syl2anc |  |-  ( ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) /\ k e. ( 0 ... ( m - j ) ) ) -> ( G ` k ) = B ) | 
						
							| 121 | 120 | sumeq2dv |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) = sum_ k e. ( 0 ... ( m - j ) ) B ) | 
						
							| 122 | 119 121 | eqtr4d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) | 
						
							| 123 | 122 | oveq1d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. ( 0 ... ( ( ( m - j ) + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 124 | 113 123 | eqtrd |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) + sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 125 | 93 112 124 | mvrladdd |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. ( sum_ k e. NN0 B - sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 127 | 3 77 | mulcomd |  |-  ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. A ) ) | 
						
							| 128 | 1 | oveq2d |  |-  ( ( ph /\ j e. NN0 ) -> ( sum_ k e. NN0 B x. ( F ` j ) ) = ( sum_ k e. NN0 B x. A ) ) | 
						
							| 129 | 127 128 | eqtr4d |  |-  ( ( ph /\ j e. NN0 ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) | 
						
							| 130 | 73 75 129 | syl2anc |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. NN0 B ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) | 
						
							| 131 | 81 91 87 | fsummulc2 |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) = sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) | 
						
							| 132 | 130 131 | oveq12d |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( A x. sum_ k e. NN0 B ) - ( A x. sum_ k e. ( 0 ... ( m - j ) ) ( G ` k ) ) ) = ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) ) | 
						
							| 133 | 94 126 132 | 3eqtr3rd |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 134 | 133 | sumeq2dv |  |-  ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 135 |  | fveq2 |  |-  ( n = j -> ( F ` n ) = ( F ` j ) ) | 
						
							| 136 | 135 | oveq2d |  |-  ( n = j -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) | 
						
							| 137 |  | eqid |  |-  ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) = ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) | 
						
							| 138 |  | ovex |  |-  ( sum_ k e. NN0 B x. ( F ` j ) ) e. _V | 
						
							| 139 | 136 137 138 | fvmpt |  |-  ( j e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) | 
						
							| 140 | 75 139 | syl |  |-  ( ( ( ph /\ m e. NN0 ) /\ j e. ( 0 ... m ) ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` j ) = ( sum_ k e. NN0 B x. ( F ` j ) ) ) | 
						
							| 141 |  | simpr |  |-  ( ( ph /\ m e. NN0 ) -> m e. NN0 ) | 
						
							| 142 | 141 9 | eleqtrdi |  |-  ( ( ph /\ m e. NN0 ) -> m e. ( ZZ>= ` 0 ) ) | 
						
							| 143 | 140 142 80 | fsumser |  |-  ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) = ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) ) | 
						
							| 144 |  | fveq2 |  |-  ( n = k -> ( G ` n ) = ( G ` k ) ) | 
						
							| 145 | 144 | oveq2d |  |-  ( n = k -> ( A x. ( G ` n ) ) = ( A x. ( G ` k ) ) ) | 
						
							| 146 |  | fveq2 |  |-  ( n = ( k - j ) -> ( G ` n ) = ( G ` ( k - j ) ) ) | 
						
							| 147 | 146 | oveq2d |  |-  ( n = ( k - j ) -> ( A x. ( G ` n ) ) = ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 148 | 88 | anasss |  |-  ( ( ( ph /\ m e. NN0 ) /\ ( j e. ( 0 ... m ) /\ k e. ( 0 ... ( m - j ) ) ) ) -> ( A x. ( G ` k ) ) e. CC ) | 
						
							| 149 | 145 147 148 | fsum0diag2 |  |-  ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 150 |  | simpll |  |-  ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ph ) | 
						
							| 151 |  | elfznn0 |  |-  ( k e. ( 0 ... m ) -> k e. NN0 ) | 
						
							| 152 | 151 | adantl |  |-  ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> k e. NN0 ) | 
						
							| 153 | 150 152 6 | syl2anc |  |-  ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 154 | 150 152 30 | syl2anc |  |-  ( ( ( ph /\ m e. NN0 ) /\ k e. ( 0 ... m ) ) -> sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) e. CC ) | 
						
							| 155 | 153 142 154 | fsumser |  |-  ( ( ph /\ m e. NN0 ) -> sum_ k e. ( 0 ... m ) sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) = ( seq 0 ( + , H ) ` m ) ) | 
						
							| 156 | 149 155 | eqtrd |  |-  ( ( ph /\ m e. NN0 ) -> sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) = ( seq 0 ( + , H ) ` m ) ) | 
						
							| 157 | 143 156 | oveq12d |  |-  ( ( ph /\ m e. NN0 ) -> ( sum_ j e. ( 0 ... m ) ( sum_ k e. NN0 B x. ( F ` j ) ) - sum_ j e. ( 0 ... m ) sum_ k e. ( 0 ... ( m - j ) ) ( A x. ( G ` k ) ) ) = ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) | 
						
							| 158 | 90 134 157 | 3eqtr3rd |  |-  ( ( ph /\ m e. NN0 ) -> ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) = sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 159 | 158 | fveq2d |  |-  ( ( ph /\ m e. NN0 ) -> ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) = ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 160 | 159 | breq1d |  |-  ( ( ph /\ m e. NN0 ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 161 | 71 160 | sylan2 |  |-  ( ( ph /\ ( y e. NN0 /\ m e. ( ZZ>= ` y ) ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 162 | 161 | anassrs |  |-  ( ( ( ph /\ y e. NN0 ) /\ m e. ( ZZ>= ` y ) ) -> ( ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 163 | 162 | ralbidva |  |-  ( ( ph /\ y e. NN0 ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 164 | 163 | rexbidva |  |-  ( ph -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 165 | 164 | adantr |  |-  ( ( ph /\ x e. RR+ ) -> ( E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x <-> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < x ) ) | 
						
							| 166 | 70 165 | mpbird |  |-  ( ( ph /\ x e. RR+ ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) | 
						
							| 167 | 166 | ralrimiva |  |-  ( ph -> A. x e. RR+ E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` ( ( seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ` m ) - ( seq 0 ( + , H ) ` m ) ) ) < x ) | 
						
							| 168 | 1 | fveq2d |  |-  ( ( ph /\ j e. NN0 ) -> ( abs ` ( F ` j ) ) = ( abs ` A ) ) | 
						
							| 169 | 2 168 | eqtr4d |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` ( F ` j ) ) ) | 
						
							| 170 | 9 10 169 78 7 | abscvgcvg |  |-  ( ph -> seq 0 ( + , F ) e. dom ~~> ) | 
						
							| 171 | 9 10 1 3 170 | isumclim2 |  |-  ( ph -> seq 0 ( + , F ) ~~> sum_ j e. NN0 A ) | 
						
							| 172 | 78 | ralrimiva |  |-  ( ph -> A. j e. NN0 ( F ` j ) e. CC ) | 
						
							| 173 |  | fveq2 |  |-  ( j = m -> ( F ` j ) = ( F ` m ) ) | 
						
							| 174 | 173 | eleq1d |  |-  ( j = m -> ( ( F ` j ) e. CC <-> ( F ` m ) e. CC ) ) | 
						
							| 175 | 174 | rspccva |  |-  ( ( A. j e. NN0 ( F ` j ) e. CC /\ m e. NN0 ) -> ( F ` m ) e. CC ) | 
						
							| 176 | 172 175 | sylan |  |-  ( ( ph /\ m e. NN0 ) -> ( F ` m ) e. CC ) | 
						
							| 177 |  | fveq2 |  |-  ( n = m -> ( F ` n ) = ( F ` m ) ) | 
						
							| 178 | 177 | oveq2d |  |-  ( n = m -> ( sum_ k e. NN0 B x. ( F ` n ) ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) | 
						
							| 179 |  | ovex |  |-  ( sum_ k e. NN0 B x. ( F ` m ) ) e. _V | 
						
							| 180 | 178 137 179 | fvmpt |  |-  ( m e. NN0 -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) | 
						
							| 181 | 180 | adantl |  |-  ( ( ph /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ` m ) = ( sum_ k e. NN0 B x. ( F ` m ) ) ) | 
						
							| 182 | 9 10 76 171 176 181 | isermulc2 |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) ) | 
						
							| 183 | 9 10 1 3 170 | isumcl |  |-  ( ph -> sum_ j e. NN0 A e. CC ) | 
						
							| 184 | 76 183 | mulcomd |  |-  ( ph -> ( sum_ k e. NN0 B x. sum_ j e. NN0 A ) = ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) | 
						
							| 185 | 182 184 | breqtrd |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( sum_ k e. NN0 B x. ( F ` n ) ) ) ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) | 
						
							| 186 | 9 10 12 33 167 185 | 2clim |  |-  ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 A x. sum_ k e. NN0 B ) ) |