| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mertens.1 |  |-  ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) | 
						
							| 2 |  | mertens.2 |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 3 |  | mertens.3 |  |-  ( ( ph /\ j e. NN0 ) -> A e. CC ) | 
						
							| 4 |  | mertens.4 |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 5 |  | mertens.5 |  |-  ( ( ph /\ k e. NN0 ) -> B e. CC ) | 
						
							| 6 |  | mertens.6 |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 7 |  | mertens.7 |  |-  ( ph -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 8 |  | mertens.8 |  |-  ( ph -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 9 |  | mertens.9 |  |-  ( ph -> E e. RR+ ) | 
						
							| 10 |  | mertens.10 |  |-  T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } | 
						
							| 11 |  | mertens.11 |  |-  ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 12 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 13 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 14 | 9 | rphalfcld |  |-  ( ph -> ( E / 2 ) e. RR+ ) | 
						
							| 15 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 16 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 17 |  | eqidd |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) | 
						
							| 18 | 3 | abscld |  |-  ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) | 
						
							| 19 | 2 18 | eqeltrd |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) | 
						
							| 20 | 15 16 17 19 7 | isumrecl |  |-  ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) | 
						
							| 21 | 3 | absge0d |  |-  ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 22 | 21 2 | breqtrrd |  |-  ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) | 
						
							| 23 | 15 16 17 19 7 22 | isumge0 |  |-  ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) | 
						
							| 24 | 20 23 | ge0p1rpd |  |-  ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) | 
						
							| 25 | 14 24 | rpdivcld |  |-  ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) | 
						
							| 26 |  | eqidd |  |-  ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) = ( seq 0 ( + , G ) ` m ) ) | 
						
							| 27 | 15 16 4 5 8 | isumclim2 |  |-  ( ph -> seq 0 ( + , G ) ~~> sum_ k e. NN0 B ) | 
						
							| 28 | 12 13 25 26 27 | climi2 |  |-  ( ph -> E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 29 |  | eluznn |  |-  ( ( s e. NN /\ m e. ( ZZ>= ` s ) ) -> m e. NN ) | 
						
							| 30 | 4 5 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 31 | 15 16 30 | serf |  |-  ( ph -> seq 0 ( + , G ) : NN0 --> CC ) | 
						
							| 32 |  | nnnn0 |  |-  ( m e. NN -> m e. NN0 ) | 
						
							| 33 |  | ffvelcdm |  |-  ( ( seq 0 ( + , G ) : NN0 --> CC /\ m e. NN0 ) -> ( seq 0 ( + , G ) ` m ) e. CC ) | 
						
							| 34 | 31 32 33 | syl2an |  |-  ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) ` m ) e. CC ) | 
						
							| 35 | 15 16 4 5 8 | isumcl |  |-  ( ph -> sum_ k e. NN0 B e. CC ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B e. CC ) | 
						
							| 37 | 34 36 | abssubd |  |-  ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) ) | 
						
							| 38 |  | eqid |  |-  ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( m + 1 ) ) | 
						
							| 39 | 32 | adantl |  |-  ( ( ph /\ m e. NN ) -> m e. NN0 ) | 
						
							| 40 |  | peano2nn0 |  |-  ( m e. NN0 -> ( m + 1 ) e. NN0 ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( ph /\ m e. NN ) -> ( m + 1 ) e. NN0 ) | 
						
							| 42 | 41 | nn0zd |  |-  ( ( ph /\ m e. NN ) -> ( m + 1 ) e. ZZ ) | 
						
							| 43 |  | simpll |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ph ) | 
						
							| 44 |  | eluznn0 |  |-  ( ( ( m + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) | 
						
							| 45 | 41 44 | sylan |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> k e. NN0 ) | 
						
							| 46 | 43 45 4 | syl2anc |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> ( G ` k ) = B ) | 
						
							| 47 | 43 45 5 | syl2anc |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( ZZ>= ` ( m + 1 ) ) ) -> B e. CC ) | 
						
							| 48 | 8 | adantr |  |-  ( ( ph /\ m e. NN ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 49 | 30 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 50 | 15 41 49 | iserex |  |-  ( ( ph /\ m e. NN ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( m + 1 ) ( + , G ) e. dom ~~> ) ) | 
						
							| 51 | 48 50 | mpbid |  |-  ( ( ph /\ m e. NN ) -> seq ( m + 1 ) ( + , G ) e. dom ~~> ) | 
						
							| 52 | 38 42 46 47 51 | isumcl |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) B e. CC ) | 
						
							| 53 | 34 52 | pncan2d |  |-  ( ( ph /\ m e. NN ) -> ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) | 
						
							| 54 | 4 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 55 | 5 | adantlr |  |-  ( ( ( ph /\ m e. NN ) /\ k e. NN0 ) -> B e. CC ) | 
						
							| 56 | 15 38 41 54 55 48 | isumsplit |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) | 
						
							| 57 |  | nncn |  |-  ( m e. NN -> m e. CC ) | 
						
							| 58 | 57 | adantl |  |-  ( ( ph /\ m e. NN ) -> m e. CC ) | 
						
							| 59 |  | ax-1cn |  |-  1 e. CC | 
						
							| 60 |  | pncan |  |-  ( ( m e. CC /\ 1 e. CC ) -> ( ( m + 1 ) - 1 ) = m ) | 
						
							| 61 | 58 59 60 | sylancl |  |-  ( ( ph /\ m e. NN ) -> ( ( m + 1 ) - 1 ) = m ) | 
						
							| 62 | 61 | oveq2d |  |-  ( ( ph /\ m e. NN ) -> ( 0 ... ( ( m + 1 ) - 1 ) ) = ( 0 ... m ) ) | 
						
							| 63 | 62 | sumeq1d |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = sum_ k e. ( 0 ... m ) B ) | 
						
							| 64 |  | simpl |  |-  ( ( ph /\ m e. NN ) -> ph ) | 
						
							| 65 |  | elfznn0 |  |-  ( k e. ( 0 ... m ) -> k e. NN0 ) | 
						
							| 66 | 64 65 4 | syl2an |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> ( G ` k ) = B ) | 
						
							| 67 | 39 15 | eleqtrdi |  |-  ( ( ph /\ m e. NN ) -> m e. ( ZZ>= ` 0 ) ) | 
						
							| 68 | 64 65 5 | syl2an |  |-  ( ( ( ph /\ m e. NN ) /\ k e. ( 0 ... m ) ) -> B e. CC ) | 
						
							| 69 | 66 67 68 | fsumser |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... m ) B = ( seq 0 ( + , G ) ` m ) ) | 
						
							| 70 | 63 69 | eqtrd |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B = ( seq 0 ( + , G ) ` m ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ph /\ m e. NN ) -> ( sum_ k e. ( 0 ... ( ( m + 1 ) - 1 ) ) B + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) | 
						
							| 72 | 56 71 | eqtrd |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. NN0 B = ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = ( ( ( seq 0 ( + , G ) ` m ) + sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) - ( seq 0 ( + , G ) ` m ) ) ) | 
						
							| 74 | 46 | sumeq2dv |  |-  ( ( ph /\ m e. NN ) -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) B ) | 
						
							| 75 | 53 73 74 | 3eqtr4d |  |-  ( ( ph /\ m e. NN ) -> ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) = sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ( ph /\ m e. NN ) -> ( abs ` ( sum_ k e. NN0 B - ( seq 0 ( + , G ) ` m ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) | 
						
							| 77 | 37 76 | eqtrd |  |-  ( ( ph /\ m e. NN ) -> ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) ) | 
						
							| 78 | 77 | breq1d |  |-  ( ( ph /\ m e. NN ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 79 | 29 78 | sylan2 |  |-  ( ( ph /\ ( s e. NN /\ m e. ( ZZ>= ` s ) ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 80 | 79 | anassrs |  |-  ( ( ( ph /\ s e. NN ) /\ m e. ( ZZ>= ` s ) ) -> ( ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 81 | 80 | ralbidva |  |-  ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 82 |  | fvoveq1 |  |-  ( m = n -> ( ZZ>= ` ( m + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) ) | 
						
							| 83 | 82 | sumeq1d |  |-  ( m = n -> sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) | 
						
							| 84 | 83 | fveq2d |  |-  ( m = n -> ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 85 | 84 | breq1d |  |-  ( m = n -> ( ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 86 | 85 | cbvralvw |  |-  ( A. m e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( m + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 87 | 81 86 | bitrdi |  |-  ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 88 |  | 0zd |  |-  ( ( ph /\ ps ) -> 0 e. ZZ ) | 
						
							| 89 | 14 | adantr |  |-  ( ( ph /\ ps ) -> ( E / 2 ) e. RR+ ) | 
						
							| 90 | 11 | simplbi |  |-  ( ps -> s e. NN ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ph /\ ps ) -> s e. NN ) | 
						
							| 92 | 91 | nnrpd |  |-  ( ( ph /\ ps ) -> s e. RR+ ) | 
						
							| 93 | 89 92 | rpdivcld |  |-  ( ( ph /\ ps ) -> ( ( E / 2 ) / s ) e. RR+ ) | 
						
							| 94 |  | eqid |  |-  ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( n + 1 ) ) | 
						
							| 95 |  | elfznn0 |  |-  ( n e. ( 0 ... ( s - 1 ) ) -> n e. NN0 ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> n e. NN0 ) | 
						
							| 97 |  | peano2nn0 |  |-  ( n e. NN0 -> ( n + 1 ) e. NN0 ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. NN0 ) | 
						
							| 99 | 98 | nn0zd |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( n + 1 ) e. ZZ ) | 
						
							| 100 |  | eqidd |  |-  ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) = ( G ` k ) ) | 
						
							| 101 |  | simplll |  |-  ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ph ) | 
						
							| 102 |  | eluznn0 |  |-  ( ( ( n + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) | 
						
							| 103 | 98 102 | sylan |  |-  ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> k e. NN0 ) | 
						
							| 104 | 101 103 30 | syl2anc |  |-  ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. ( ZZ>= ` ( n + 1 ) ) ) -> ( G ` k ) e. CC ) | 
						
							| 105 | 8 | ad2antrr |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 106 | 30 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 107 | 15 98 106 | iserex |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( n + 1 ) ( + , G ) e. dom ~~> ) ) | 
						
							| 108 | 105 107 | mpbid |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> seq ( n + 1 ) ( + , G ) e. dom ~~> ) | 
						
							| 109 | 94 99 100 104 108 | isumcl |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) e. CC ) | 
						
							| 110 | 109 | abscld |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR ) | 
						
							| 111 |  | eleq1a |  |-  ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) e. RR -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( ( ( ph /\ ps ) /\ n e. ( 0 ... ( s - 1 ) ) ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) | 
						
							| 113 | 112 | rexlimdva |  |-  ( ( ph /\ ps ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) -> z e. RR ) ) | 
						
							| 114 | 113 | abssdv |  |-  ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } C_ RR ) | 
						
							| 115 | 10 114 | eqsstrid |  |-  ( ( ph /\ ps ) -> T C_ RR ) | 
						
							| 116 |  | fzfid |  |-  ( ( ph /\ ps ) -> ( 0 ... ( s - 1 ) ) e. Fin ) | 
						
							| 117 |  | abrexfi |  |-  ( ( 0 ... ( s - 1 ) ) e. Fin -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) | 
						
							| 118 | 116 117 | syl |  |-  ( ( ph /\ ps ) -> { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } e. Fin ) | 
						
							| 119 | 10 118 | eqeltrid |  |-  ( ( ph /\ ps ) -> T e. Fin ) | 
						
							| 120 |  | nnm1nn0 |  |-  ( s e. NN -> ( s - 1 ) e. NN0 ) | 
						
							| 121 | 91 120 | syl |  |-  ( ( ph /\ ps ) -> ( s - 1 ) e. NN0 ) | 
						
							| 122 | 121 15 | eleqtrdi |  |-  ( ( ph /\ ps ) -> ( s - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 123 |  | eluzfz1 |  |-  ( ( s - 1 ) e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... ( s - 1 ) ) ) | 
						
							| 124 | 122 123 | syl |  |-  ( ( ph /\ ps ) -> 0 e. ( 0 ... ( s - 1 ) ) ) | 
						
							| 125 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 126 | 125 4 | sylan2 |  |-  ( ( ph /\ k e. NN ) -> ( G ` k ) = B ) | 
						
							| 127 | 126 | sumeq2dv |  |-  ( ph -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ph /\ ps ) -> sum_ k e. NN ( G ` k ) = sum_ k e. NN B ) | 
						
							| 129 | 128 | fveq2d |  |-  ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN ( G ` k ) ) = ( abs ` sum_ k e. NN B ) ) | 
						
							| 130 | 129 | eqcomd |  |-  ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) | 
						
							| 131 |  | fv0p1e1 |  |-  ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` 1 ) ) | 
						
							| 132 | 131 12 | eqtr4di |  |-  ( n = 0 -> ( ZZ>= ` ( n + 1 ) ) = NN ) | 
						
							| 133 | 132 | sumeq1d |  |-  ( n = 0 -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. NN ( G ` k ) ) | 
						
							| 134 | 133 | fveq2d |  |-  ( n = 0 -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) | 
						
							| 135 | 134 | rspceeqv |  |-  ( ( 0 e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. NN ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 136 | 124 130 135 | syl2anc |  |-  ( ( ph /\ ps ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 137 |  | fvex |  |-  ( abs ` sum_ k e. NN B ) e. _V | 
						
							| 138 |  | eqeq1 |  |-  ( z = ( abs ` sum_ k e. NN B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 139 | 138 | rexbidv |  |-  ( z = ( abs ` sum_ k e. NN B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 140 | 137 139 10 | elab2 |  |-  ( ( abs ` sum_ k e. NN B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. NN B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 141 | 136 140 | sylibr |  |-  ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. T ) | 
						
							| 142 | 141 | ne0d |  |-  ( ( ph /\ ps ) -> T =/= (/) ) | 
						
							| 143 |  | ltso |  |-  < Or RR | 
						
							| 144 |  | fisupcl |  |-  ( ( < Or RR /\ ( T e. Fin /\ T =/= (/) /\ T C_ RR ) ) -> sup ( T , RR , < ) e. T ) | 
						
							| 145 | 143 144 | mpan |  |-  ( ( T e. Fin /\ T =/= (/) /\ T C_ RR ) -> sup ( T , RR , < ) e. T ) | 
						
							| 146 | 119 142 115 145 | syl3anc |  |-  ( ( ph /\ ps ) -> sup ( T , RR , < ) e. T ) | 
						
							| 147 | 115 146 | sseldd |  |-  ( ( ph /\ ps ) -> sup ( T , RR , < ) e. RR ) | 
						
							| 148 |  | 0red |  |-  ( ( ph /\ ps ) -> 0 e. RR ) | 
						
							| 149 | 125 5 | sylan2 |  |-  ( ( ph /\ k e. NN ) -> B e. CC ) | 
						
							| 150 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 151 | 150 | a1i |  |-  ( ph -> 1 e. NN0 ) | 
						
							| 152 | 15 151 30 | iserex |  |-  ( ph -> ( seq 0 ( + , G ) e. dom ~~> <-> seq 1 ( + , G ) e. dom ~~> ) ) | 
						
							| 153 | 8 152 | mpbid |  |-  ( ph -> seq 1 ( + , G ) e. dom ~~> ) | 
						
							| 154 | 12 13 126 149 153 | isumcl |  |-  ( ph -> sum_ k e. NN B e. CC ) | 
						
							| 155 | 154 | adantr |  |-  ( ( ph /\ ps ) -> sum_ k e. NN B e. CC ) | 
						
							| 156 | 155 | abscld |  |-  ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) e. RR ) | 
						
							| 157 | 155 | absge0d |  |-  ( ( ph /\ ps ) -> 0 <_ ( abs ` sum_ k e. NN B ) ) | 
						
							| 158 |  | fimaxre2 |  |-  ( ( T C_ RR /\ T e. Fin ) -> E. z e. RR A. w e. T w <_ z ) | 
						
							| 159 | 115 119 158 | syl2anc |  |-  ( ( ph /\ ps ) -> E. z e. RR A. w e. T w <_ z ) | 
						
							| 160 | 115 142 159 141 | suprubd |  |-  ( ( ph /\ ps ) -> ( abs ` sum_ k e. NN B ) <_ sup ( T , RR , < ) ) | 
						
							| 161 | 148 156 147 157 160 | letrd |  |-  ( ( ph /\ ps ) -> 0 <_ sup ( T , RR , < ) ) | 
						
							| 162 | 147 161 | ge0p1rpd |  |-  ( ( ph /\ ps ) -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) | 
						
							| 163 | 93 162 | rpdivcld |  |-  ( ( ph /\ ps ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) | 
						
							| 164 |  | fveq2 |  |-  ( n = m -> ( K ` n ) = ( K ` m ) ) | 
						
							| 165 |  | eqid |  |-  ( n e. NN0 |-> ( K ` n ) ) = ( n e. NN0 |-> ( K ` n ) ) | 
						
							| 166 |  | fvex |  |-  ( K ` m ) e. _V | 
						
							| 167 | 164 165 166 | fvmpt |  |-  ( m e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) | 
						
							| 168 | 167 | adantl |  |-  ( ( ( ph /\ ps ) /\ m e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` m ) = ( K ` m ) ) | 
						
							| 169 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 170 | 169 | mptex |  |-  ( n e. NN0 |-> ( K ` n ) ) e. _V | 
						
							| 171 | 170 | a1i |  |-  ( ph -> ( n e. NN0 |-> ( K ` n ) ) e. _V ) | 
						
							| 172 |  | elnn0uz |  |-  ( j e. NN0 <-> j e. ( ZZ>= ` 0 ) ) | 
						
							| 173 |  | fveq2 |  |-  ( n = j -> ( K ` n ) = ( K ` j ) ) | 
						
							| 174 |  | fvex |  |-  ( K ` j ) e. _V | 
						
							| 175 | 173 165 174 | fvmpt |  |-  ( j e. NN0 -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) | 
						
							| 176 | 175 | adantl |  |-  ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) | 
						
							| 177 | 172 176 | sylan2br |  |-  ( ( ph /\ j e. ( ZZ>= ` 0 ) ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( K ` j ) ) | 
						
							| 178 | 16 177 | seqfeq |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) = seq 0 ( + , K ) ) | 
						
							| 179 | 178 7 | eqeltrd |  |-  ( ph -> seq 0 ( + , ( n e. NN0 |-> ( K ` n ) ) ) e. dom ~~> ) | 
						
							| 180 | 176 2 | eqtrd |  |-  ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) = ( abs ` A ) ) | 
						
							| 181 | 180 18 | eqeltrd |  |-  ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. RR ) | 
						
							| 182 | 181 | recnd |  |-  ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( K ` n ) ) ` j ) e. CC ) | 
						
							| 183 | 15 16 171 179 182 | serf0 |  |-  ( ph -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) | 
						
							| 184 | 183 | adantr |  |-  ( ( ph /\ ps ) -> ( n e. NN0 |-> ( K ` n ) ) ~~> 0 ) | 
						
							| 185 | 15 88 163 168 184 | climi0 |  |-  ( ( ph /\ ps ) -> E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 186 |  | simplll |  |-  ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ph ) | 
						
							| 187 |  | eluznn0 |  |-  ( ( t e. NN0 /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) | 
						
							| 188 | 187 | adantll |  |-  ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> m e. NN0 ) | 
						
							| 189 | 19 22 | absidd |  |-  ( ( ph /\ j e. NN0 ) -> ( abs ` ( K ` j ) ) = ( K ` j ) ) | 
						
							| 190 | 189 | ralrimiva |  |-  ( ph -> A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) ) | 
						
							| 191 |  | fveq2 |  |-  ( j = m -> ( K ` j ) = ( K ` m ) ) | 
						
							| 192 | 191 | fveq2d |  |-  ( j = m -> ( abs ` ( K ` j ) ) = ( abs ` ( K ` m ) ) ) | 
						
							| 193 | 192 191 | eqeq12d |  |-  ( j = m -> ( ( abs ` ( K ` j ) ) = ( K ` j ) <-> ( abs ` ( K ` m ) ) = ( K ` m ) ) ) | 
						
							| 194 | 193 | rspccva |  |-  ( ( A. j e. NN0 ( abs ` ( K ` j ) ) = ( K ` j ) /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) | 
						
							| 195 | 190 194 | sylan |  |-  ( ( ph /\ m e. NN0 ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) | 
						
							| 196 | 186 188 195 | syl2anc |  |-  ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( abs ` ( K ` m ) ) = ( K ` m ) ) | 
						
							| 197 | 196 | breq1d |  |-  ( ( ( ( ph /\ ps ) /\ t e. NN0 ) /\ m e. ( ZZ>= ` t ) ) -> ( ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 198 | 197 | ralbidva |  |-  ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 199 | 164 | breq1d |  |-  ( n = m -> ( ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 200 | 199 | cbvralvw |  |-  ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 201 | 198 200 | bitr4di |  |-  ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 202 | 1 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( F ` j ) = A ) | 
						
							| 203 | 2 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 204 | 3 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ j e. NN0 ) -> A e. CC ) | 
						
							| 205 | 4 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 206 | 5 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> B e. CC ) | 
						
							| 207 | 6 | ad4ant14 |  |-  ( ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 208 | 7 | ad2antrr |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 209 | 8 | ad2antrr |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 210 | 9 | ad2antrr |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E e. RR+ ) | 
						
							| 211 | 200 | anbi2i |  |-  ( ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) <-> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 212 | 211 | anbi2i |  |-  ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) <-> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) | 
						
							| 213 | 212 | biimpi |  |-  ( ( ps /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) | 
						
							| 214 | 213 | adantll |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) | 
						
							| 215 | 115 142 159 | 3jca |  |-  ( ( ph /\ ps ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) | 
						
							| 216 | 161 215 | jca |  |-  ( ( ph /\ ps ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) | 
						
							| 217 | 216 | adantr |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) | 
						
							| 218 | 202 203 204 205 206 207 208 209 210 10 11 214 217 | mertenslem1 |  |-  ( ( ( ph /\ ps ) /\ ( t e. NN0 /\ A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 219 | 218 | expr |  |-  ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. n e. ( ZZ>= ` t ) ( K ` n ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 220 | 201 219 | sylbid |  |-  ( ( ( ph /\ ps ) /\ t e. NN0 ) -> ( A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 221 | 220 | rexlimdva |  |-  ( ( ph /\ ps ) -> ( E. t e. NN0 A. m e. ( ZZ>= ` t ) ( abs ` ( K ` m ) ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 222 | 185 221 | mpd |  |-  ( ( ph /\ ps ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 223 | 222 | ex |  |-  ( ph -> ( ps -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 224 | 11 223 | biimtrrid |  |-  ( ph -> ( ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 225 | 224 | expdimp |  |-  ( ( ph /\ s e. NN ) -> ( A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 226 | 87 225 | sylbid |  |-  ( ( ph /\ s e. NN ) -> ( A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 227 | 226 | rexlimdva |  |-  ( ph -> ( E. s e. NN A. m e. ( ZZ>= ` s ) ( abs ` ( ( seq 0 ( + , G ) ` m ) - sum_ k e. NN0 B ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 228 | 28 227 | mpd |  |-  ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |