| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mertens.1 |  |-  ( ( ph /\ j e. NN0 ) -> ( F ` j ) = A ) | 
						
							| 2 |  | mertens.2 |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 3 |  | mertens.3 |  |-  ( ( ph /\ j e. NN0 ) -> A e. CC ) | 
						
							| 4 |  | mertens.4 |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) = B ) | 
						
							| 5 |  | mertens.5 |  |-  ( ( ph /\ k e. NN0 ) -> B e. CC ) | 
						
							| 6 |  | mertens.6 |  |-  ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( A x. ( G ` ( k - j ) ) ) ) | 
						
							| 7 |  | mertens.7 |  |-  ( ph -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 8 |  | mertens.8 |  |-  ( ph -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 9 |  | mertens.9 |  |-  ( ph -> E e. RR+ ) | 
						
							| 10 |  | mertens.10 |  |-  T = { z | E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) } | 
						
							| 11 |  | mertens.11 |  |-  ( ps <-> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 12 |  | mertens.12 |  |-  ( ph -> ( ps /\ ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) ) | 
						
							| 13 |  | mertens.13 |  |-  ( ph -> ( 0 <_ sup ( T , RR , < ) /\ ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) ) | 
						
							| 14 | 12 | simpld |  |-  ( ph -> ps ) | 
						
							| 15 | 14 11 | sylib |  |-  ( ph -> ( s e. NN /\ A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> s e. NN ) | 
						
							| 17 | 16 | nnnn0d |  |-  ( ph -> s e. NN0 ) | 
						
							| 18 | 12 | simprd |  |-  ( ph -> ( t e. NN0 /\ A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ph -> t e. NN0 ) | 
						
							| 20 | 17 19 | nn0addcld |  |-  ( ph -> ( s + t ) e. NN0 ) | 
						
							| 21 |  | fzfid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) e. Fin ) | 
						
							| 22 |  | simpl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ph ) | 
						
							| 23 |  | elfznn0 |  |-  ( j e. ( 0 ... m ) -> j e. NN0 ) | 
						
							| 24 | 22 23 3 | syl2an |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> A e. CC ) | 
						
							| 25 |  | eqid |  |-  ( ZZ>= ` ( ( m - j ) + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) | 
						
							| 26 |  | fznn0sub |  |-  ( j e. ( 0 ... m ) -> ( m - j ) e. NN0 ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( m - j ) e. NN0 ) | 
						
							| 28 |  | peano2nn0 |  |-  ( ( m - j ) e. NN0 -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 30 | 29 | nn0zd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( m - j ) + 1 ) e. ZZ ) | 
						
							| 31 |  | simplll |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) | 
						
							| 32 |  | eluznn0 |  |-  ( ( ( ( m - j ) + 1 ) e. NN0 /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 33 | 29 32 | sylan |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 34 | 31 33 4 | syl2anc |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) | 
						
							| 35 | 31 33 5 | syl2anc |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) | 
						
							| 36 | 8 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq 0 ( + , G ) e. dom ~~> ) | 
						
							| 37 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 38 |  | simpll |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ph ) | 
						
							| 39 | 4 5 | eqeltrd |  |-  ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 40 | 38 39 | sylan |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) /\ k e. NN0 ) -> ( G ` k ) e. CC ) | 
						
							| 41 | 37 29 40 | iserex |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( seq 0 ( + , G ) e. dom ~~> <-> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) ) | 
						
							| 42 | 36 41 | mpbid |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) | 
						
							| 43 | 25 30 34 35 42 | isumcl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) | 
						
							| 44 | 24 43 | mulcld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) | 
						
							| 45 | 21 44 | fsumcl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. CC ) | 
						
							| 46 | 45 | abscld |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 47 | 44 | abscld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 48 | 21 47 | fsumrecl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 49 | 9 | rpred |  |-  ( ph -> E e. RR ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. RR ) | 
						
							| 51 | 21 44 | fsumabs |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 52 |  | fzfid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) e. Fin ) | 
						
							| 53 | 17 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. NN0 ) | 
						
							| 54 | 53 | nn0ge0d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 <_ s ) | 
						
							| 55 |  | eluzelz |  |-  ( m e. ( ZZ>= ` ( s + t ) ) -> m e. ZZ ) | 
						
							| 56 | 55 | adantl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ZZ ) | 
						
							| 57 | 56 | zred |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. RR ) | 
						
							| 58 | 53 | nn0red |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. RR ) | 
						
							| 59 | 57 58 | subge02d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 <_ s <-> ( m - s ) <_ m ) ) | 
						
							| 60 | 54 59 | mpbid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) <_ m ) | 
						
							| 61 | 53 37 | eleqtrdi |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( ZZ>= ` 0 ) ) | 
						
							| 62 | 16 | nnzd |  |-  ( ph -> s e. ZZ ) | 
						
							| 63 |  | uzid |  |-  ( s e. ZZ -> s e. ( ZZ>= ` s ) ) | 
						
							| 64 | 62 63 | syl |  |-  ( ph -> s e. ( ZZ>= ` s ) ) | 
						
							| 65 |  | uzaddcl |  |-  ( ( s e. ( ZZ>= ` s ) /\ t e. NN0 ) -> ( s + t ) e. ( ZZ>= ` s ) ) | 
						
							| 66 | 64 19 65 | syl2anc |  |-  ( ph -> ( s + t ) e. ( ZZ>= ` s ) ) | 
						
							| 67 |  | eqid |  |-  ( ZZ>= ` s ) = ( ZZ>= ` s ) | 
						
							| 68 | 67 | uztrn2 |  |-  ( ( ( s + t ) e. ( ZZ>= ` s ) /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) | 
						
							| 69 | 66 68 | sylan |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` s ) ) | 
						
							| 70 |  | elfzuzb |  |-  ( s e. ( 0 ... m ) <-> ( s e. ( ZZ>= ` 0 ) /\ m e. ( ZZ>= ` s ) ) ) | 
						
							| 71 | 61 69 70 | sylanbrc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ( 0 ... m ) ) | 
						
							| 72 |  | fznn0sub2 |  |-  ( s e. ( 0 ... m ) -> ( m - s ) e. ( 0 ... m ) ) | 
						
							| 73 | 71 72 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( 0 ... m ) ) | 
						
							| 74 |  | elfzelz |  |-  ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. ZZ ) | 
						
							| 75 | 73 74 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ZZ ) | 
						
							| 76 |  | eluz |  |-  ( ( ( m - s ) e. ZZ /\ m e. ZZ ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) | 
						
							| 77 | 75 56 76 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m e. ( ZZ>= ` ( m - s ) ) <-> ( m - s ) <_ m ) ) | 
						
							| 78 | 60 77 | mpbird |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. ( ZZ>= ` ( m - s ) ) ) | 
						
							| 79 |  | fzss2 |  |-  ( m e. ( ZZ>= ` ( m - s ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) | 
						
							| 80 | 78 79 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ ( 0 ... m ) ) | 
						
							| 81 | 80 | sselda |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ( 0 ... m ) ) | 
						
							| 82 | 3 | abscld |  |-  ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) | 
						
							| 83 | 22 23 82 | syl2an |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` A ) e. RR ) | 
						
							| 84 | 43 | abscld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) | 
						
							| 85 | 83 84 | remulcld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 86 | 81 85 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 87 | 52 86 | fsumrecl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 88 |  | fzfid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) e. Fin ) | 
						
							| 89 |  | elfznn0 |  |-  ( ( m - s ) e. ( 0 ... m ) -> ( m - s ) e. NN0 ) | 
						
							| 90 | 73 89 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. NN0 ) | 
						
							| 91 |  | peano2nn0 |  |-  ( ( m - s ) e. NN0 -> ( ( m - s ) + 1 ) e. NN0 ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. NN0 ) | 
						
							| 93 | 92 37 | eleqtrdi |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 94 |  | fzss1 |  |-  ( ( ( m - s ) + 1 ) e. ( ZZ>= ` 0 ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( m - s ) + 1 ) ... m ) C_ ( 0 ... m ) ) | 
						
							| 96 | 95 | sselda |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( 0 ... m ) ) | 
						
							| 97 | 96 85 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 98 | 88 97 | fsumrecl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. RR ) | 
						
							| 99 | 9 | rphalfcld |  |-  ( ph -> ( E / 2 ) e. RR+ ) | 
						
							| 100 | 99 | rpred |  |-  ( ph -> ( E / 2 ) e. RR ) | 
						
							| 101 | 100 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. RR ) | 
						
							| 102 |  | elfznn0 |  |-  ( j e. ( 0 ... ( m - s ) ) -> j e. NN0 ) | 
						
							| 103 | 22 102 82 | syl2an |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. RR ) | 
						
							| 104 | 52 103 | fsumrecl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR ) | 
						
							| 105 | 104 101 | remulcld |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR ) | 
						
							| 106 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 107 |  | eqidd |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) = ( K ` j ) ) | 
						
							| 108 | 2 82 | eqeltrd |  |-  ( ( ph /\ j e. NN0 ) -> ( K ` j ) e. RR ) | 
						
							| 109 | 37 106 107 108 7 | isumrecl |  |-  ( ph -> sum_ j e. NN0 ( K ` j ) e. RR ) | 
						
							| 110 | 3 | absge0d |  |-  ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 111 | 110 2 | breqtrrd |  |-  ( ( ph /\ j e. NN0 ) -> 0 <_ ( K ` j ) ) | 
						
							| 112 | 37 106 107 108 7 111 | isumge0 |  |-  ( ph -> 0 <_ sum_ j e. NN0 ( K ` j ) ) | 
						
							| 113 | 109 112 | ge0p1rpd |  |-  ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR+ ) | 
						
							| 115 | 105 114 | rerpdivcld |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) | 
						
							| 116 | 99 113 | rpdivcld |  |-  ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR+ ) | 
						
							| 117 | 116 | rpred |  |-  ( ph -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) | 
						
							| 118 | 117 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR ) | 
						
							| 119 | 103 118 | remulcld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) e. RR ) | 
						
							| 120 | 81 30 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. ZZ ) | 
						
							| 121 |  | simplll |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) | 
						
							| 122 | 81 29 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 123 | 122 32 | sylan |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 124 | 121 123 4 | syl2anc |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) | 
						
							| 125 | 121 123 5 | syl2anc |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> B e. CC ) | 
						
							| 126 | 81 42 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> seq ( ( m - j ) + 1 ) ( + , G ) e. dom ~~> ) | 
						
							| 127 | 25 120 124 125 126 | isumcl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B e. CC ) | 
						
							| 128 | 127 | abscld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) | 
						
							| 129 | 82 110 | jca |  |-  ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) | 
						
							| 130 | 22 102 129 | syl2an |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) | 
						
							| 131 | 124 | sumeq2dv |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) | 
						
							| 132 | 131 | fveq2d |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 133 |  | fvoveq1 |  |-  ( n = ( m - j ) -> ( ZZ>= ` ( n + 1 ) ) = ( ZZ>= ` ( ( m - j ) + 1 ) ) ) | 
						
							| 134 | 133 | sumeq1d |  |-  ( n = ( m - j ) -> sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) | 
						
							| 135 | 134 | fveq2d |  |-  ( n = ( m - j ) -> ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) | 
						
							| 136 | 135 | breq1d |  |-  ( n = ( m - j ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 137 | 15 | simprd |  |-  ( ph -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 138 | 137 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> A. n e. ( ZZ>= ` s ) ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 139 |  | elfzelz |  |-  ( j e. ( 0 ... ( m - s ) ) -> j e. ZZ ) | 
						
							| 140 | 139 | adantl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. ZZ ) | 
						
							| 141 | 140 | zred |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j e. RR ) | 
						
							| 142 | 55 | ad2antlr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. ZZ ) | 
						
							| 143 | 142 | zred |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> m e. RR ) | 
						
							| 144 | 62 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. ZZ ) | 
						
							| 145 | 144 | zred |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s e. RR ) | 
						
							| 146 |  | elfzle2 |  |-  ( j e. ( 0 ... ( m - s ) ) -> j <_ ( m - s ) ) | 
						
							| 147 | 146 | adantl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> j <_ ( m - s ) ) | 
						
							| 148 | 141 143 145 147 | lesubd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> s <_ ( m - j ) ) | 
						
							| 149 | 142 140 | zsubcld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ZZ ) | 
						
							| 150 |  | eluz |  |-  ( ( s e. ZZ /\ ( m - j ) e. ZZ ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) | 
						
							| 151 | 144 149 150 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( m - j ) e. ( ZZ>= ` s ) <-> s <_ ( m - j ) ) ) | 
						
							| 152 | 148 151 | mpbird |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( m - j ) e. ( ZZ>= ` s ) ) | 
						
							| 153 | 136 138 152 | rspcdva |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 154 | 132 153 | eqbrtrrd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) < ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 155 | 128 118 154 | ltled |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 156 |  | lemul2a |  |-  ( ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) e. RR /\ ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 157 | 128 118 130 155 156 | syl31anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 158 | 52 86 119 157 | fsumle |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 159 | 104 | recnd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. CC ) | 
						
							| 160 | 99 | rpcnd |  |-  ( ph -> ( E / 2 ) e. CC ) | 
						
							| 161 | 160 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( E / 2 ) e. CC ) | 
						
							| 162 |  | peano2re |  |-  ( sum_ j e. NN0 ( K ` j ) e. RR -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) | 
						
							| 163 | 109 162 | syl |  |-  ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) | 
						
							| 164 | 163 | recnd |  |-  ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) | 
						
							| 165 | 164 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. CC ) | 
						
							| 166 | 113 | rpne0d |  |-  ( ph -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) =/= 0 ) | 
						
							| 168 | 159 161 165 167 | divassd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 169 |  | fveq2 |  |-  ( n = j -> ( K ` n ) = ( K ` j ) ) | 
						
							| 170 | 169 | cbvsumv |  |-  sum_ n e. NN0 ( K ` n ) = sum_ j e. NN0 ( K ` j ) | 
						
							| 171 | 170 | oveq1i |  |-  ( sum_ n e. NN0 ( K ` n ) + 1 ) = ( sum_ j e. NN0 ( K ` j ) + 1 ) | 
						
							| 172 | 171 | oveq2i |  |-  ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) = ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) | 
						
							| 173 | 172 116 | eqeltrid |  |-  ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. RR+ ) | 
						
							| 174 | 173 | rpcnd |  |-  ( ph -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) e. CC ) | 
						
							| 176 | 82 | recnd |  |-  ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. CC ) | 
						
							| 177 | 22 102 176 | syl2an |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... ( m - s ) ) ) -> ( abs ` A ) e. CC ) | 
						
							| 178 | 52 175 177 | fsummulc1 |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) ) | 
						
							| 179 | 172 | oveq2i |  |-  ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 180 | 172 | oveq2i |  |-  ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 181 | 180 | a1i |  |-  ( j e. ( 0 ... ( m - s ) ) -> ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 182 | 181 | sumeq2i |  |-  sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ n e. NN0 ( K ` n ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 183 | 178 179 182 | 3eqtr3g |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 184 | 168 183 | eqtrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) = sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( ( E / 2 ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) ) | 
						
							| 185 | 158 184 | breqtrrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 186 | 109 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) e. RR ) | 
						
							| 187 | 163 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR ) | 
						
							| 188 |  | 0zd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 0 e. ZZ ) | 
						
							| 189 |  | fz0ssnn0 |  |-  ( 0 ... ( m - s ) ) C_ NN0 | 
						
							| 190 | 189 | a1i |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... ( m - s ) ) C_ NN0 ) | 
						
							| 191 | 2 | adantlr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 192 | 82 | adantlr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> ( abs ` A ) e. RR ) | 
						
							| 193 | 110 | adantlr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) | 
						
							| 194 | 7 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> seq 0 ( + , K ) e. dom ~~> ) | 
						
							| 195 | 37 188 52 190 191 192 193 194 | isumless |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( abs ` A ) ) | 
						
							| 196 | 2 | sumeq2dv |  |-  ( ph -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) | 
						
							| 197 | 196 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) = sum_ j e. NN0 ( abs ` A ) ) | 
						
							| 198 | 195 197 | breqtrrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) <_ sum_ j e. NN0 ( K ` j ) ) | 
						
							| 199 | 109 | ltp1d |  |-  ( ph -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) | 
						
							| 200 | 199 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. NN0 ( K ` j ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) | 
						
							| 201 | 104 186 187 198 200 | lelttrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) | 
						
							| 202 | 99 | rpregt0d |  |-  ( ph -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) | 
						
							| 203 | 202 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) | 
						
							| 204 |  | ltmul1 |  |-  ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) e. RR /\ ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ ( ( E / 2 ) e. RR /\ 0 < ( E / 2 ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) | 
						
							| 205 | 104 187 203 204 | syl3anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) < ( sum_ j e. NN0 ( K ` j ) + 1 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) | 
						
							| 206 | 201 205 | mpbid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) | 
						
							| 207 | 113 | rpregt0d |  |-  ( ph -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 208 | 207 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) | 
						
							| 209 |  | ltdivmul |  |-  ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) e. RR /\ ( E / 2 ) e. RR /\ ( ( sum_ j e. NN0 ( K ` j ) + 1 ) e. RR /\ 0 < ( sum_ j e. NN0 ( K ` j ) + 1 ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) | 
						
							| 210 | 105 101 208 209 | syl3anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) <-> ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) < ( ( sum_ j e. NN0 ( K ` j ) + 1 ) x. ( E / 2 ) ) ) ) | 
						
							| 211 | 206 210 | mpbird |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( sum_ j e. ( 0 ... ( m - s ) ) ( abs ` A ) x. ( E / 2 ) ) / ( sum_ j e. NN0 ( K ` j ) + 1 ) ) < ( E / 2 ) ) | 
						
							| 212 | 87 115 101 185 211 | lelttrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) | 
						
							| 213 | 13 | simprd |  |-  ( ph -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) | 
						
							| 214 |  | suprcl |  |-  ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) -> sup ( T , RR , < ) e. RR ) | 
						
							| 215 | 213 214 | syl |  |-  ( ph -> sup ( T , RR , < ) e. RR ) | 
						
							| 216 | 100 215 | remulcld |  |-  ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) e. RR ) | 
						
							| 217 | 13 | simpld |  |-  ( ph -> 0 <_ sup ( T , RR , < ) ) | 
						
							| 218 | 215 217 | ge0p1rpd |  |-  ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR+ ) | 
						
							| 219 | 216 218 | rerpdivcld |  |-  ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) | 
						
							| 220 | 219 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) | 
						
							| 221 | 16 | nnrpd |  |-  ( ph -> s e. RR+ ) | 
						
							| 222 | 99 221 | rpdivcld |  |-  ( ph -> ( ( E / 2 ) / s ) e. RR+ ) | 
						
							| 223 | 222 218 | rpdivcld |  |-  ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR+ ) | 
						
							| 224 | 223 | rpred |  |-  ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) | 
						
							| 225 | 224 215 | remulcld |  |-  ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) | 
						
							| 226 | 225 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. RR ) | 
						
							| 227 |  | simpll |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ph ) | 
						
							| 228 | 96 23 | syl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. NN0 ) | 
						
							| 229 | 227 228 82 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) e. RR ) | 
						
							| 230 | 224 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) | 
						
							| 231 | 227 228 2 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) = ( abs ` A ) ) | 
						
							| 232 |  | fveq2 |  |-  ( m = j -> ( K ` m ) = ( K ` j ) ) | 
						
							| 233 | 232 | breq1d |  |-  ( m = j -> ( ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) <-> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 234 | 18 | simprd |  |-  ( ph -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 235 | 234 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> A. m e. ( ZZ>= ` t ) ( K ` m ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 236 |  | elfzuz |  |-  ( j e. ( ( ( m - s ) + 1 ) ... m ) -> j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) ) | 
						
							| 237 |  | eluzle |  |-  ( m e. ( ZZ>= ` ( s + t ) ) -> ( s + t ) <_ m ) | 
						
							| 238 | 237 | adantl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + t ) <_ m ) | 
						
							| 239 | 19 | nn0zd |  |-  ( ph -> t e. ZZ ) | 
						
							| 240 | 239 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. ZZ ) | 
						
							| 241 | 240 | zred |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t e. RR ) | 
						
							| 242 | 58 241 57 | leaddsub2d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( s + t ) <_ m <-> t <_ ( m - s ) ) ) | 
						
							| 243 | 238 242 | mpbid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> t <_ ( m - s ) ) | 
						
							| 244 |  | eluz |  |-  ( ( t e. ZZ /\ ( m - s ) e. ZZ ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) | 
						
							| 245 | 240 75 244 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) e. ( ZZ>= ` t ) <-> t <_ ( m - s ) ) ) | 
						
							| 246 | 243 245 | mpbird |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. ( ZZ>= ` t ) ) | 
						
							| 247 |  | peano2uz |  |-  ( ( m - s ) e. ( ZZ>= ` t ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) | 
						
							| 248 | 246 247 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) | 
						
							| 249 |  | uztrn |  |-  ( ( j e. ( ZZ>= ` ( ( m - s ) + 1 ) ) /\ ( ( m - s ) + 1 ) e. ( ZZ>= ` t ) ) -> j e. ( ZZ>= ` t ) ) | 
						
							| 250 | 236 248 249 | syl2anr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. ( ZZ>= ` t ) ) | 
						
							| 251 | 233 235 250 | rspcdva |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( K ` j ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 252 | 231 251 | eqbrtrrd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) < ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 253 | 229 230 252 | ltled |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 254 | 213 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) ) | 
						
							| 255 | 57 | adantr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> m e. RR ) | 
						
							| 256 |  | peano2zm |  |-  ( s e. ZZ -> ( s - 1 ) e. ZZ ) | 
						
							| 257 | 62 256 | syl |  |-  ( ph -> ( s - 1 ) e. ZZ ) | 
						
							| 258 | 257 | zred |  |-  ( ph -> ( s - 1 ) e. RR ) | 
						
							| 259 | 258 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. RR ) | 
						
							| 260 | 228 | nn0red |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> j e. RR ) | 
						
							| 261 | 56 | zcnd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> m e. CC ) | 
						
							| 262 | 58 | recnd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. CC ) | 
						
							| 263 |  | 1cnd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. CC ) | 
						
							| 264 | 261 262 263 | subsubd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) | 
						
							| 265 | 264 | adantr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) = ( ( m - s ) + 1 ) ) | 
						
							| 266 |  | elfzle1 |  |-  ( j e. ( ( ( m - s ) + 1 ) ... m ) -> ( ( m - s ) + 1 ) <_ j ) | 
						
							| 267 | 266 | adantl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - s ) + 1 ) <_ j ) | 
						
							| 268 | 265 267 | eqbrtrd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - ( s - 1 ) ) <_ j ) | 
						
							| 269 | 255 259 260 268 | subled |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) <_ ( s - 1 ) ) | 
						
							| 270 | 96 26 | syl |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. NN0 ) | 
						
							| 271 | 270 37 | eleqtrdi |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( ZZ>= ` 0 ) ) | 
						
							| 272 | 257 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( s - 1 ) e. ZZ ) | 
						
							| 273 |  | elfz5 |  |-  ( ( ( m - j ) e. ( ZZ>= ` 0 ) /\ ( s - 1 ) e. ZZ ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) | 
						
							| 274 | 271 272 273 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) e. ( 0 ... ( s - 1 ) ) <-> ( m - j ) <_ ( s - 1 ) ) ) | 
						
							| 275 | 269 274 | mpbird |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( m - j ) e. ( 0 ... ( s - 1 ) ) ) | 
						
							| 276 |  | simplll |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ph ) | 
						
							| 277 | 96 29 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( m - j ) + 1 ) e. NN0 ) | 
						
							| 278 | 277 32 | sylan |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> k e. NN0 ) | 
						
							| 279 | 276 278 4 | syl2anc |  |-  ( ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) /\ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ) -> ( G ` k ) = B ) | 
						
							| 280 | 279 | sumeq2dv |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) | 
						
							| 281 | 280 | eqcomd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B = sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) | 
						
							| 282 | 281 | fveq2d |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) | 
						
							| 283 | 135 | rspceeqv |  |-  ( ( ( m - j ) e. ( 0 ... ( s - 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) ( G ` k ) ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 284 | 275 282 283 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 285 |  | fvex |  |-  ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. _V | 
						
							| 286 |  | eqeq1 |  |-  ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 287 | 286 | rexbidv |  |-  ( z = ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) -> ( E. n e. ( 0 ... ( s - 1 ) ) z = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) ) | 
						
							| 288 | 285 287 10 | elab2 |  |-  ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T <-> E. n e. ( 0 ... ( s - 1 ) ) ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) = ( abs ` sum_ k e. ( ZZ>= ` ( n + 1 ) ) ( G ` k ) ) ) | 
						
							| 289 | 284 288 | sylibr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) | 
						
							| 290 |  | suprub |  |-  ( ( ( T C_ RR /\ T =/= (/) /\ E. z e. RR A. w e. T w <_ z ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. T ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) | 
						
							| 291 | 254 289 290 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) | 
						
							| 292 | 227 228 129 | syl2anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) ) | 
						
							| 293 | 96 84 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR ) | 
						
							| 294 | 43 | absge0d |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 295 | 96 294 | syldan |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) | 
						
							| 296 | 293 295 | jca |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 297 | 215 | ad2antrr |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> sup ( T , RR , < ) e. RR ) | 
						
							| 298 |  | lemul12a |  |-  ( ( ( ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) ) /\ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. RR ) /\ ( ( ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) e. RR /\ 0 <_ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) /\ sup ( T , RR , < ) e. RR ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 299 | 292 230 296 297 298 | syl22anc |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( ( abs ` A ) <_ ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) /\ ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) <_ sup ( T , RR , < ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 300 | 253 291 299 | mp2and |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( ( ( m - s ) + 1 ) ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) | 
						
							| 301 | 88 97 226 300 | fsumle |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) | 
						
							| 302 | 225 | recnd |  |-  ( ph -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) | 
						
							| 303 | 302 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) | 
						
							| 304 |  | fsumconst |  |-  ( ( ( ( ( m - s ) + 1 ) ... m ) e. Fin /\ ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) e. CC ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 305 | 88 303 304 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 306 |  | 1zzd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> 1 e. ZZ ) | 
						
							| 307 | 62 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> s e. ZZ ) | 
						
							| 308 |  | fzen |  |-  ( ( 1 e. ZZ /\ s e. ZZ /\ ( m - s ) e. ZZ ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) | 
						
							| 309 | 306 307 75 308 | syl3anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) ) | 
						
							| 310 |  | ax-1cn |  |-  1 e. CC | 
						
							| 311 | 75 | zcnd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. CC ) | 
						
							| 312 |  | addcom |  |-  ( ( 1 e. CC /\ ( m - s ) e. CC ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) | 
						
							| 313 | 310 311 312 | sylancr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 + ( m - s ) ) = ( ( m - s ) + 1 ) ) | 
						
							| 314 | 262 261 | pncan3d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s + ( m - s ) ) = m ) | 
						
							| 315 | 313 314 | oveq12d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 1 + ( m - s ) ) ... ( s + ( m - s ) ) ) = ( ( ( m - s ) + 1 ) ... m ) ) | 
						
							| 316 | 309 315 | breqtrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) | 
						
							| 317 |  | fzfid |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 1 ... s ) e. Fin ) | 
						
							| 318 |  | hashen |  |-  ( ( ( 1 ... s ) e. Fin /\ ( ( ( m - s ) + 1 ) ... m ) e. Fin ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) | 
						
							| 319 | 317 88 318 | syl2anc |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) <-> ( 1 ... s ) ~~ ( ( ( m - s ) + 1 ) ... m ) ) ) | 
						
							| 320 | 316 319 | mpbird |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = ( # ` ( ( ( m - s ) + 1 ) ... m ) ) ) | 
						
							| 321 |  | hashfz1 |  |-  ( s e. NN0 -> ( # ` ( 1 ... s ) ) = s ) | 
						
							| 322 | 53 321 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( 1 ... s ) ) = s ) | 
						
							| 323 | 320 322 | eqtr3d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( # ` ( ( ( m - s ) + 1 ) ... m ) ) = s ) | 
						
							| 324 | 323 | oveq1d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( # ` ( ( ( m - s ) + 1 ) ... m ) ) x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 325 | 215 | recnd |  |-  ( ph -> sup ( T , RR , < ) e. CC ) | 
						
							| 326 | 218 | rpcnne0d |  |-  ( ph -> ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) | 
						
							| 327 |  | div23 |  |-  ( ( ( E / 2 ) e. CC /\ sup ( T , RR , < ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) | 
						
							| 328 | 160 325 326 327 | syl3anc |  |-  ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) | 
						
							| 329 | 62 | zcnd |  |-  ( ph -> s e. CC ) | 
						
							| 330 | 222 | rpcnd |  |-  ( ph -> ( ( E / 2 ) / s ) e. CC ) | 
						
							| 331 |  | divass |  |-  ( ( s e. CC /\ ( ( E / 2 ) / s ) e. CC /\ ( ( sup ( T , RR , < ) + 1 ) e. CC /\ ( sup ( T , RR , < ) + 1 ) =/= 0 ) ) -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 332 | 329 330 326 331 | syl3anc |  |-  ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 333 | 16 | nnne0d |  |-  ( ph -> s =/= 0 ) | 
						
							| 334 | 160 329 333 | divcan2d |  |-  ( ph -> ( s x. ( ( E / 2 ) / s ) ) = ( E / 2 ) ) | 
						
							| 335 | 334 | oveq1d |  |-  ( ph -> ( ( s x. ( ( E / 2 ) / s ) ) / ( sup ( T , RR , < ) + 1 ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 336 | 332 335 | eqtr3d |  |-  ( ph -> ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) = ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 337 | 336 | oveq1d |  |-  ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) | 
						
							| 338 | 223 | rpcnd |  |-  ( ph -> ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) e. CC ) | 
						
							| 339 | 329 338 325 | mulassd |  |-  ( ph -> ( ( s x. ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) ) x. sup ( T , RR , < ) ) = ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) ) | 
						
							| 340 | 328 337 339 | 3eqtr2rd |  |-  ( ph -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 341 | 340 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( s x. ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 342 | 305 324 341 | 3eqtrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( ( ( E / 2 ) / s ) / ( sup ( T , RR , < ) + 1 ) ) x. sup ( T , RR , < ) ) = ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 343 | 301 342 | breqtrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) <_ ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 344 |  | peano2re |  |-  ( sup ( T , RR , < ) e. RR -> ( sup ( T , RR , < ) + 1 ) e. RR ) | 
						
							| 345 | 215 344 | syl |  |-  ( ph -> ( sup ( T , RR , < ) + 1 ) e. RR ) | 
						
							| 346 | 215 | ltp1d |  |-  ( ph -> sup ( T , RR , < ) < ( sup ( T , RR , < ) + 1 ) ) | 
						
							| 347 | 215 345 99 346 | ltmul2dd |  |-  ( ph -> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) | 
						
							| 348 | 216 100 218 | ltdivmul2d |  |-  ( ph -> ( ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) <-> ( ( E / 2 ) x. sup ( T , RR , < ) ) < ( ( E / 2 ) x. ( sup ( T , RR , < ) + 1 ) ) ) ) | 
						
							| 349 | 347 348 | mpbird |  |-  ( ph -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) | 
						
							| 350 | 349 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( ( E / 2 ) x. sup ( T , RR , < ) ) / ( sup ( T , RR , < ) + 1 ) ) < ( E / 2 ) ) | 
						
							| 351 | 98 220 101 343 350 | lelttrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < ( E / 2 ) ) | 
						
							| 352 | 87 98 101 101 212 351 | lt2addd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) < ( ( E / 2 ) + ( E / 2 ) ) ) | 
						
							| 353 | 24 43 | absmuld |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 354 | 353 | sumeq2dv |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 355 | 75 | zred |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) e. RR ) | 
						
							| 356 | 355 | ltp1d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( m - s ) < ( ( m - s ) + 1 ) ) | 
						
							| 357 |  | fzdisj |  |-  ( ( m - s ) < ( ( m - s ) + 1 ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) | 
						
							| 358 | 356 357 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( 0 ... ( m - s ) ) i^i ( ( ( m - s ) + 1 ) ... m ) ) = (/) ) | 
						
							| 359 |  | fzsplit |  |-  ( ( m - s ) e. ( 0 ... m ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) | 
						
							| 360 | 73 359 | syl |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( 0 ... m ) = ( ( 0 ... ( m - s ) ) u. ( ( ( m - s ) + 1 ) ... m ) ) ) | 
						
							| 361 | 85 | recnd |  |-  ( ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) /\ j e. ( 0 ... m ) ) -> ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) e. CC ) | 
						
							| 362 | 358 360 21 361 | fsumsplit |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) = ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) ) | 
						
							| 363 | 354 362 | eqtr2d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( sum_ j e. ( 0 ... ( m - s ) ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) + sum_ j e. ( ( ( m - s ) + 1 ) ... m ) ( ( abs ` A ) x. ( abs ` sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) = sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) ) | 
						
							| 364 | 9 | rpcnd |  |-  ( ph -> E e. CC ) | 
						
							| 365 | 364 | adantr |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> E e. CC ) | 
						
							| 366 | 365 | 2halvesd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( ( E / 2 ) + ( E / 2 ) ) = E ) | 
						
							| 367 | 352 363 366 | 3brtr3d |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> sum_ j e. ( 0 ... m ) ( abs ` ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 368 | 46 48 50 51 367 | lelttrd |  |-  ( ( ph /\ m e. ( ZZ>= ` ( s + t ) ) ) -> ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 369 | 368 | ralrimiva |  |-  ( ph -> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 370 |  | fveq2 |  |-  ( y = ( s + t ) -> ( ZZ>= ` y ) = ( ZZ>= ` ( s + t ) ) ) | 
						
							| 371 | 370 | raleqdv |  |-  ( y = ( s + t ) -> ( A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E <-> A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) ) | 
						
							| 372 | 371 | rspcev |  |-  ( ( ( s + t ) e. NN0 /\ A. m e. ( ZZ>= ` ( s + t ) ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) | 
						
							| 373 | 20 369 372 | syl2anc |  |-  ( ph -> E. y e. NN0 A. m e. ( ZZ>= ` y ) ( abs ` sum_ j e. ( 0 ... m ) ( A x. sum_ k e. ( ZZ>= ` ( ( m - j ) + 1 ) ) B ) ) < E ) |