Metamath Proof Explorer


Theorem mertenslem2

Description: Lemma for mertens . (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses mertens.1 φj0Fj=A
mertens.2 φj0Kj=A
mertens.3 φj0A
mertens.4 φk0Gk=B
mertens.5 φk0B
mertens.6 φk0Hk=j=0kAGkj
mertens.7 φseq0+Kdom
mertens.8 φseq0+Gdom
mertens.9 φE+
mertens.10 T=z|n0s1z=kn+1Gk
mertens.11 ψsnskn+1Gk<E2j0Kj+1
Assertion mertenslem2 φy0myj=0mAkm-j+1B<E

Proof

Step Hyp Ref Expression
1 mertens.1 φj0Fj=A
2 mertens.2 φj0Kj=A
3 mertens.3 φj0A
4 mertens.4 φk0Gk=B
5 mertens.5 φk0B
6 mertens.6 φk0Hk=j=0kAGkj
7 mertens.7 φseq0+Kdom
8 mertens.8 φseq0+Gdom
9 mertens.9 φE+
10 mertens.10 T=z|n0s1z=kn+1Gk
11 mertens.11 ψsnskn+1Gk<E2j0Kj+1
12 nnuz =1
13 1zzd φ1
14 9 rphalfcld φE2+
15 nn0uz 0=0
16 0zd φ0
17 eqidd φj0Kj=Kj
18 3 abscld φj0A
19 2 18 eqeltrd φj0Kj
20 15 16 17 19 7 isumrecl φj0Kj
21 3 absge0d φj00A
22 21 2 breqtrrd φj00Kj
23 15 16 17 19 7 22 isumge0 φ0j0Kj
24 20 23 ge0p1rpd φj0Kj+1+
25 14 24 rpdivcld φE2j0Kj+1+
26 eqidd φmseq0+Gm=seq0+Gm
27 15 16 4 5 8 isumclim2 φseq0+Gk0B
28 12 13 25 26 27 climi2 φsmsseq0+Gmk0B<E2j0Kj+1
29 eluznn smsm
30 4 5 eqeltrd φk0Gk
31 15 16 30 serf φseq0+G:0
32 nnnn0 mm0
33 ffvelcdm seq0+G:0m0seq0+Gm
34 31 32 33 syl2an φmseq0+Gm
35 15 16 4 5 8 isumcl φk0B
36 35 adantr φmk0B
37 34 36 abssubd φmseq0+Gmk0B=k0Bseq0+Gm
38 eqid m+1=m+1
39 32 adantl φmm0
40 peano2nn0 m0m+10
41 39 40 syl φmm+10
42 41 nn0zd φmm+1
43 simpll φmkm+1φ
44 eluznn0 m+10km+1k0
45 41 44 sylan φmkm+1k0
46 43 45 4 syl2anc φmkm+1Gk=B
47 43 45 5 syl2anc φmkm+1B
48 8 adantr φmseq0+Gdom
49 30 adantlr φmk0Gk
50 15 41 49 iserex φmseq0+Gdomseqm+1+Gdom
51 48 50 mpbid φmseqm+1+Gdom
52 38 42 46 47 51 isumcl φmkm+1B
53 34 52 pncan2d φmseq0+Gm+km+1B-seq0+Gm=km+1B
54 4 adantlr φmk0Gk=B
55 5 adantlr φmk0B
56 15 38 41 54 55 48 isumsplit φmk0B=k=0m+1-1B+km+1B
57 nncn mm
58 57 adantl φmm
59 ax-1cn 1
60 pncan m1m+1-1=m
61 58 59 60 sylancl φmm+1-1=m
62 61 oveq2d φm0m+1-1=0m
63 62 sumeq1d φmk=0m+1-1B=k=0mB
64 simpl φmφ
65 elfznn0 k0mk0
66 64 65 4 syl2an φmk0mGk=B
67 39 15 eleqtrdi φmm0
68 64 65 5 syl2an φmk0mB
69 66 67 68 fsumser φmk=0mB=seq0+Gm
70 63 69 eqtrd φmk=0m+1-1B=seq0+Gm
71 70 oveq1d φmk=0m+1-1B+km+1B=seq0+Gm+km+1B
72 56 71 eqtrd φmk0B=seq0+Gm+km+1B
73 72 oveq1d φmk0Bseq0+Gm=seq0+Gm+km+1B-seq0+Gm
74 46 sumeq2dv φmkm+1Gk=km+1B
75 53 73 74 3eqtr4d φmk0Bseq0+Gm=km+1Gk
76 75 fveq2d φmk0Bseq0+Gm=km+1Gk
77 37 76 eqtrd φmseq0+Gmk0B=km+1Gk
78 77 breq1d φmseq0+Gmk0B<E2j0Kj+1km+1Gk<E2j0Kj+1
79 29 78 sylan2 φsmsseq0+Gmk0B<E2j0Kj+1km+1Gk<E2j0Kj+1
80 79 anassrs φsmsseq0+Gmk0B<E2j0Kj+1km+1Gk<E2j0Kj+1
81 80 ralbidva φsmsseq0+Gmk0B<E2j0Kj+1mskm+1Gk<E2j0Kj+1
82 fvoveq1 m=nm+1=n+1
83 82 sumeq1d m=nkm+1Gk=kn+1Gk
84 83 fveq2d m=nkm+1Gk=kn+1Gk
85 84 breq1d m=nkm+1Gk<E2j0Kj+1kn+1Gk<E2j0Kj+1
86 85 cbvralvw mskm+1Gk<E2j0Kj+1nskn+1Gk<E2j0Kj+1
87 81 86 bitrdi φsmsseq0+Gmk0B<E2j0Kj+1nskn+1Gk<E2j0Kj+1
88 0zd φψ0
89 14 adantr φψE2+
90 11 simplbi ψs
91 90 adantl φψs
92 91 nnrpd φψs+
93 89 92 rpdivcld φψE2s+
94 eqid n+1=n+1
95 elfznn0 n0s1n0
96 95 adantl φψn0s1n0
97 peano2nn0 n0n+10
98 96 97 syl φψn0s1n+10
99 98 nn0zd φψn0s1n+1
100 eqidd φψn0s1kn+1Gk=Gk
101 simplll φψn0s1kn+1φ
102 eluznn0 n+10kn+1k0
103 98 102 sylan φψn0s1kn+1k0
104 101 103 30 syl2anc φψn0s1kn+1Gk
105 8 ad2antrr φψn0s1seq0+Gdom
106 30 ad4ant14 φψn0s1k0Gk
107 15 98 106 iserex φψn0s1seq0+Gdomseqn+1+Gdom
108 105 107 mpbid φψn0s1seqn+1+Gdom
109 94 99 100 104 108 isumcl φψn0s1kn+1Gk
110 109 abscld φψn0s1kn+1Gk
111 eleq1a kn+1Gkz=kn+1Gkz
112 110 111 syl φψn0s1z=kn+1Gkz
113 112 rexlimdva φψn0s1z=kn+1Gkz
114 113 abssdv φψz|n0s1z=kn+1Gk
115 10 114 eqsstrid φψT
116 fzfid φψ0s1Fin
117 abrexfi 0s1Finz|n0s1z=kn+1GkFin
118 116 117 syl φψz|n0s1z=kn+1GkFin
119 10 118 eqeltrid φψTFin
120 nnm1nn0 ss10
121 91 120 syl φψs10
122 121 15 eleqtrdi φψs10
123 eluzfz1 s1000s1
124 122 123 syl φψ00s1
125 nnnn0 kk0
126 125 4 sylan2 φkGk=B
127 126 sumeq2dv φkGk=kB
128 127 adantr φψkGk=kB
129 128 fveq2d φψkGk=kB
130 129 eqcomd φψkB=kGk
131 fv0p1e1 n=0n+1=1
132 131 12 eqtr4di n=0n+1=
133 132 sumeq1d n=0kn+1Gk=kGk
134 133 fveq2d n=0kn+1Gk=kGk
135 134 rspceeqv 00s1kB=kGkn0s1kB=kn+1Gk
136 124 130 135 syl2anc φψn0s1kB=kn+1Gk
137 fvex kBV
138 eqeq1 z=kBz=kn+1GkkB=kn+1Gk
139 138 rexbidv z=kBn0s1z=kn+1Gkn0s1kB=kn+1Gk
140 137 139 10 elab2 kBTn0s1kB=kn+1Gk
141 136 140 sylibr φψkBT
142 141 ne0d φψT
143 ltso <Or
144 fisupcl <OrTFinTTsupT<T
145 143 144 mpan TFinTTsupT<T
146 119 142 115 145 syl3anc φψsupT<T
147 115 146 sseldd φψsupT<
148 0red φψ0
149 125 5 sylan2 φkB
150 1nn0 10
151 150 a1i φ10
152 15 151 30 iserex φseq0+Gdomseq1+Gdom
153 8 152 mpbid φseq1+Gdom
154 12 13 126 149 153 isumcl φkB
155 154 adantr φψkB
156 155 abscld φψkB
157 155 absge0d φψ0kB
158 fimaxre2 TTFinzwTwz
159 115 119 158 syl2anc φψzwTwz
160 115 142 159 141 suprubd φψkBsupT<
161 148 156 147 157 160 letrd φψ0supT<
162 147 161 ge0p1rpd φψsupT<+1+
163 93 162 rpdivcld φψE2ssupT<+1+
164 fveq2 n=mKn=Km
165 eqid n0Kn=n0Kn
166 fvex KmV
167 164 165 166 fvmpt m0n0Knm=Km
168 167 adantl φψm0n0Knm=Km
169 nn0ex 0V
170 169 mptex n0KnV
171 170 a1i φn0KnV
172 elnn0uz j0j0
173 fveq2 n=jKn=Kj
174 fvex KjV
175 173 165 174 fvmpt j0n0Knj=Kj
176 175 adantl φj0n0Knj=Kj
177 172 176 sylan2br φj0n0Knj=Kj
178 16 177 seqfeq φseq0+n0Kn=seq0+K
179 178 7 eqeltrd φseq0+n0Kndom
180 176 2 eqtrd φj0n0Knj=A
181 180 18 eqeltrd φj0n0Knj
182 181 recnd φj0n0Knj
183 15 16 171 179 182 serf0 φn0Kn0
184 183 adantr φψn0Kn0
185 15 88 163 168 184 climi0 φψt0mtKm<E2ssupT<+1
186 simplll φψt0mtφ
187 eluznn0 t0mtm0
188 187 adantll φψt0mtm0
189 19 22 absidd φj0Kj=Kj
190 189 ralrimiva φj0Kj=Kj
191 fveq2 j=mKj=Km
192 191 fveq2d j=mKj=Km
193 192 191 eqeq12d j=mKj=KjKm=Km
194 193 rspccva j0Kj=Kjm0Km=Km
195 190 194 sylan φm0Km=Km
196 186 188 195 syl2anc φψt0mtKm=Km
197 196 breq1d φψt0mtKm<E2ssupT<+1Km<E2ssupT<+1
198 197 ralbidva φψt0mtKm<E2ssupT<+1mtKm<E2ssupT<+1
199 164 breq1d n=mKn<E2ssupT<+1Km<E2ssupT<+1
200 199 cbvralvw ntKn<E2ssupT<+1mtKm<E2ssupT<+1
201 198 200 bitr4di φψt0mtKm<E2ssupT<+1ntKn<E2ssupT<+1
202 1 ad4ant14 φψt0ntKn<E2ssupT<+1j0Fj=A
203 2 ad4ant14 φψt0ntKn<E2ssupT<+1j0Kj=A
204 3 ad4ant14 φψt0ntKn<E2ssupT<+1j0A
205 4 ad4ant14 φψt0ntKn<E2ssupT<+1k0Gk=B
206 5 ad4ant14 φψt0ntKn<E2ssupT<+1k0B
207 6 ad4ant14 φψt0ntKn<E2ssupT<+1k0Hk=j=0kAGkj
208 7 ad2antrr φψt0ntKn<E2ssupT<+1seq0+Kdom
209 8 ad2antrr φψt0ntKn<E2ssupT<+1seq0+Gdom
210 9 ad2antrr φψt0ntKn<E2ssupT<+1E+
211 200 anbi2i t0ntKn<E2ssupT<+1t0mtKm<E2ssupT<+1
212 211 anbi2i ψt0ntKn<E2ssupT<+1ψt0mtKm<E2ssupT<+1
213 212 biimpi ψt0ntKn<E2ssupT<+1ψt0mtKm<E2ssupT<+1
214 213 adantll φψt0ntKn<E2ssupT<+1ψt0mtKm<E2ssupT<+1
215 115 142 159 3jca φψTTzwTwz
216 161 215 jca φψ0supT<TTzwTwz
217 216 adantr φψt0ntKn<E2ssupT<+10supT<TTzwTwz
218 202 203 204 205 206 207 208 209 210 10 11 214 217 mertenslem1 φψt0ntKn<E2ssupT<+1y0myj=0mAkm-j+1B<E
219 218 expr φψt0ntKn<E2ssupT<+1y0myj=0mAkm-j+1B<E
220 201 219 sylbid φψt0mtKm<E2ssupT<+1y0myj=0mAkm-j+1B<E
221 220 rexlimdva φψt0mtKm<E2ssupT<+1y0myj=0mAkm-j+1B<E
222 185 221 mpd φψy0myj=0mAkm-j+1B<E
223 222 ex φψy0myj=0mAkm-j+1B<E
224 11 223 biimtrrid φsnskn+1Gk<E2j0Kj+1y0myj=0mAkm-j+1B<E
225 224 expdimp φsnskn+1Gk<E2j0Kj+1y0myj=0mAkm-j+1B<E
226 87 225 sylbid φsmsseq0+Gmk0B<E2j0Kj+1y0myj=0mAkm-j+1B<E
227 226 rexlimdva φsmsseq0+Gmk0B<E2j0Kj+1y0myj=0mAkm-j+1B<E
228 28 227 mpd φy0myj=0mAkm-j+1B<E