| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mertens.1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 2 |  | mertens.2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 3 |  | mertens.3 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | mertens.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 5 |  | mertens.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 |  | mertens.6 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 7 |  | mertens.7 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐾 )  ∈  dom   ⇝  ) | 
						
							| 8 |  | mertens.8 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 9 |  | mertens.9 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 10 |  | mertens.10 | ⊢ 𝑇  =  { 𝑧  ∣  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) } | 
						
							| 11 |  | mertens.11 | ⊢ ( 𝜓  ↔  ( 𝑠  ∈  ℕ  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 12 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 13 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 14 | 9 | rphalfcld | ⊢ ( 𝜑  →  ( 𝐸  /  2 )  ∈  ℝ+ ) | 
						
							| 15 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 16 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 17 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 18 | 3 | abscld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 19 | 2 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 20 | 15 16 17 19 7 | isumrecl | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 21 | 3 | absge0d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 22 | 21 2 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  0  ≤  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 23 | 15 16 17 19 7 22 | isumge0 | ⊢ ( 𝜑  →  0  ≤  Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 24 | 20 23 | ge0p1rpd | ⊢ ( 𝜑  →  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 )  ∈  ℝ+ ) | 
						
							| 25 | 14 24 | rpdivcld | ⊢ ( 𝜑  →  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 26 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  =  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) | 
						
							| 27 | 15 16 4 5 8 | isumclim2 | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐺 )  ⇝  Σ 𝑘  ∈  ℕ0 𝐵 ) | 
						
							| 28 | 12 13 25 26 27 | climi2 | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) | 
						
							| 29 |  | eluznn | ⊢ ( ( 𝑠  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 30 | 4 5 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 31 | 15 16 30 | serf | ⊢ ( 𝜑  →  seq 0 (  +  ,  𝐺 ) : ℕ0 ⟶ ℂ ) | 
						
							| 32 |  | nnnn0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℕ0 ) | 
						
							| 33 |  | ffvelcdm | ⊢ ( ( seq 0 (  +  ,  𝐺 ) : ℕ0 ⟶ ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 34 | 31 32 33 | syl2an | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 35 | 15 16 4 5 8 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 𝐵  ∈  ℂ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ0 𝐵  ∈  ℂ ) | 
						
							| 37 | 34 36 | abssubd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  =  ( abs ‘ ( Σ 𝑘  ∈  ℕ0 𝐵  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) ) ) | 
						
							| 38 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝑚  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) | 
						
							| 39 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℕ0 ) | 
						
							| 40 |  | peano2nn0 | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝑚  +  1 )  ∈  ℕ0 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℕ0 ) | 
						
							| 42 | 41 | nn0zd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚  +  1 )  ∈  ℤ ) | 
						
							| 43 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  𝜑 ) | 
						
							| 44 |  | eluznn0 | ⊢ ( ( ( 𝑚  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 45 | 41 44 | sylan | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 46 | 43 45 4 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 47 | 43 45 5 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 48 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 49 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 50 | 15 41 49 | iserex | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝   ↔  seq ( 𝑚  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) ) | 
						
							| 51 | 48 50 | mpbid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  seq ( 𝑚  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 52 | 38 42 46 47 51 | isumcl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵  ∈  ℂ ) | 
						
							| 53 | 34 52 | pncan2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 )  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 ) | 
						
							| 54 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 55 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 56 | 15 38 41 54 55 48 | isumsplit | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ0 𝐵  =  ( Σ 𝑘  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) 𝐵  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 ) ) | 
						
							| 57 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 59 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 60 |  | pncan | ⊢ ( ( 𝑚  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑚  +  1 )  −  1 )  =  𝑚 ) | 
						
							| 61 | 58 59 60 | sylancl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑚  +  1 )  −  1 )  =  𝑚 ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) )  =  ( 0 ... 𝑚 ) ) | 
						
							| 63 | 62 | sumeq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) 𝐵  =  Σ 𝑘  ∈  ( 0 ... 𝑚 ) 𝐵 ) | 
						
							| 64 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝜑 ) | 
						
							| 65 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑚 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 66 | 64 65 4 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 67 | 39 15 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 68 | 64 65 5 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑚 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 69 | 66 67 68 | fsumser | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) 𝐵  =  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) | 
						
							| 70 | 63 69 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) 𝐵  =  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 0 ... ( ( 𝑚  +  1 )  −  1 ) ) 𝐵  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 )  =  ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 ) ) | 
						
							| 72 | 56 71 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ℕ0 𝐵  =  ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  ( ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 )  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) ) | 
						
							| 74 | 46 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) 𝐵 ) | 
						
							| 75 | 53 73 74 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( Σ 𝑘  ∈  ℕ0 𝐵  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 76 | 75 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( Σ 𝑘  ∈  ℕ0 𝐵  −  ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 ) ) )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 77 | 37 76 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 78 | 77 | breq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 79 | 29 78 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑠  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ) )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 80 | 79 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑠  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) )  →  ( ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 81 | 80 | ralbidva | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 82 |  | fvoveq1 | ⊢ ( 𝑚  =  𝑛  →  ( ℤ≥ ‘ ( 𝑚  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 83 | 82 | sumeq1d | ⊢ ( 𝑚  =  𝑛  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 84 | 83 | fveq2d | ⊢ ( 𝑚  =  𝑛  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 85 | 84 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 86 | 85 | cbvralvw | ⊢ ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) | 
						
							| 87 | 81 86 | bitrdi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) ) ) | 
						
							| 88 |  | 0zd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ∈  ℤ ) | 
						
							| 89 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐸  /  2 )  ∈  ℝ+ ) | 
						
							| 90 | 11 | simplbi | ⊢ ( 𝜓  →  𝑠  ∈  ℕ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑠  ∈  ℕ ) | 
						
							| 92 | 91 | nnrpd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑠  ∈  ℝ+ ) | 
						
							| 93 | 89 92 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝐸  /  2 )  /  𝑠 )  ∈  ℝ+ ) | 
						
							| 94 |  | eqid | ⊢ ( ℤ≥ ‘ ( 𝑛  +  1 ) )  =  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) | 
						
							| 95 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 97 |  | peano2nn0 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ0 ) | 
						
							| 99 | 98 | nn0zd | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  ( 𝑛  +  1 )  ∈  ℤ ) | 
						
							| 100 |  | eqidd | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 101 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝜑 ) | 
						
							| 102 |  | eluznn0 | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 103 | 98 102 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 104 | 101 103 30 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 105 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 106 | 30 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 107 | 15 98 106 | iserex | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  ( seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝   ↔  seq ( 𝑛  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) ) | 
						
							| 108 | 105 107 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  seq ( 𝑛  +  1 ) (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 109 | 94 99 100 104 108 | isumcl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 110 | 109 | abscld | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 111 |  | eleq1a | ⊢ ( ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ∈  ℝ  →  ( 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  →  𝑧  ∈  ℝ ) ) | 
						
							| 112 | 110 111 | syl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) )  →  ( 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  →  𝑧  ∈  ℝ ) ) | 
						
							| 113 | 112 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  →  𝑧  ∈  ℝ ) ) | 
						
							| 114 | 113 | abssdv | ⊢ ( ( 𝜑  ∧  𝜓 )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) }  ⊆  ℝ ) | 
						
							| 115 | 10 114 | eqsstrid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑇  ⊆  ℝ ) | 
						
							| 116 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 0 ... ( 𝑠  −  1 ) )  ∈  Fin ) | 
						
							| 117 |  | abrexfi | ⊢ ( ( 0 ... ( 𝑠  −  1 ) )  ∈  Fin  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) }  ∈  Fin ) | 
						
							| 118 | 116 117 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  { 𝑧  ∣  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) }  ∈  Fin ) | 
						
							| 119 | 10 118 | eqeltrid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑇  ∈  Fin ) | 
						
							| 120 |  | nnm1nn0 | ⊢ ( 𝑠  ∈  ℕ  →  ( 𝑠  −  1 )  ∈  ℕ0 ) | 
						
							| 121 | 91 120 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑠  −  1 )  ∈  ℕ0 ) | 
						
							| 122 | 121 15 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑠  −  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 123 |  | eluzfz1 | ⊢ ( ( 𝑠  −  1 )  ∈  ( ℤ≥ ‘ 0 )  →  0  ∈  ( 0 ... ( 𝑠  −  1 ) ) ) | 
						
							| 124 | 122 123 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ∈  ( 0 ... ( 𝑠  −  1 ) ) ) | 
						
							| 125 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 126 | 125 4 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 127 | 126 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ 𝐵 ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ 𝐵 ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( abs ‘ Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 ) )  =  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 ) ) | 
						
							| 130 | 129 | eqcomd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 131 |  | fv0p1e1 | ⊢ ( 𝑛  =  0  →  ( ℤ≥ ‘ ( 𝑛  +  1 ) )  =  ( ℤ≥ ‘ 1 ) ) | 
						
							| 132 | 131 12 | eqtr4di | ⊢ ( 𝑛  =  0  →  ( ℤ≥ ‘ ( 𝑛  +  1 ) )  =  ℕ ) | 
						
							| 133 | 132 | sumeq1d | ⊢ ( 𝑛  =  0  →  Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 134 | 133 | fveq2d | ⊢ ( 𝑛  =  0  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  =  ( abs ‘ Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 135 | 134 | rspceeqv | ⊢ ( ( 0  ∈  ( 0 ... ( 𝑠  −  1 ) )  ∧  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ℕ ( 𝐺 ‘ 𝑘 ) ) )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 136 | 124 130 135 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 137 |  | fvex | ⊢ ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  ∈  V | 
						
							| 138 |  | eqeq1 | ⊢ ( 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  →  ( 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ↔  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 139 | 138 | rexbidv | ⊢ ( 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  →  ( ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) 𝑧  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 140 | 137 139 10 | elab2 | ⊢ ( ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  ∈  𝑇  ↔  ∃ 𝑛  ∈  ( 0 ... ( 𝑠  −  1 ) ) ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  =  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 141 | 136 140 | sylibr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  ∈  𝑇 ) | 
						
							| 142 | 141 | ne0d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑇  ≠  ∅ ) | 
						
							| 143 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 144 |  | fisupcl | ⊢ ( (  <   Or  ℝ  ∧  ( 𝑇  ∈  Fin  ∧  𝑇  ≠  ∅  ∧  𝑇  ⊆  ℝ ) )  →  sup ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 145 | 143 144 | mpan | ⊢ ( ( 𝑇  ∈  Fin  ∧  𝑇  ≠  ∅  ∧  𝑇  ⊆  ℝ )  →  sup ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 146 | 119 142 115 145 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  sup ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 147 | 115 146 | sseldd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  sup ( 𝑇 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 148 |  | 0red | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ∈  ℝ ) | 
						
							| 149 | 125 5 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 150 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 151 | 150 | a1i | ⊢ ( 𝜑  →  1  ∈  ℕ0 ) | 
						
							| 152 | 15 151 30 | iserex | ⊢ ( 𝜑  →  ( seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝   ↔  seq 1 (  +  ,  𝐺 )  ∈  dom   ⇝  ) ) | 
						
							| 153 | 8 152 | mpbid | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 154 | 12 13 126 149 153 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ 𝐵  ∈  ℂ ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Σ 𝑘  ∈  ℕ 𝐵  ∈  ℂ ) | 
						
							| 156 | 155 | abscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  ∈  ℝ ) | 
						
							| 157 | 155 | absge0d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ≤  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 ) ) | 
						
							| 158 |  | fimaxre2 | ⊢ ( ( 𝑇  ⊆  ℝ  ∧  𝑇  ∈  Fin )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑇 𝑤  ≤  𝑧 ) | 
						
							| 159 | 115 119 158 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑇 𝑤  ≤  𝑧 ) | 
						
							| 160 | 115 142 159 141 | suprubd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( abs ‘ Σ 𝑘  ∈  ℕ 𝐵 )  ≤  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 161 | 148 156 147 157 160 | letrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ≤  sup ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 162 | 147 161 | ge0p1rpd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 )  ∈  ℝ+ ) | 
						
							| 163 | 93 162 | rpdivcld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 164 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 165 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) | 
						
							| 166 |  | fvex | ⊢ ( 𝐾 ‘ 𝑚 )  ∈  V | 
						
							| 167 | 164 165 166 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 168 | 167 | adantl | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑚 )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 169 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 170 | 169 | mptex | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) )  ∈  V | 
						
							| 171 | 170 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) )  ∈  V ) | 
						
							| 172 |  | elnn0uz | ⊢ ( 𝑗  ∈  ℕ0  ↔  𝑗  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 173 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 174 |  | fvex | ⊢ ( 𝐾 ‘ 𝑗 )  ∈  V | 
						
							| 175 | 173 165 174 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 176 | 175 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 177 | 172 176 | sylan2br | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 0 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 178 | 16 177 | seqfeq | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) )  =  seq 0 (  +  ,  𝐾 ) ) | 
						
							| 179 | 178 7 | eqeltrd | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 180 | 176 2 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 181 | 180 18 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  ∈  ℝ ) | 
						
							| 182 | 181 | recnd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 183 | 15 16 171 179 182 | serf0 | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) )  ⇝  0 ) | 
						
							| 184 | 183 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐾 ‘ 𝑛 ) )  ⇝  0 ) | 
						
							| 185 | 15 88 163 168 184 | climi0 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑡  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) | 
						
							| 186 |  | simplll | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) )  →  𝜑 ) | 
						
							| 187 |  | eluznn0 | ⊢ ( ( 𝑡  ∈  ℕ0  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 188 | 187 | adantll | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 189 | 19 22 | absidd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( abs ‘ ( 𝐾 ‘ 𝑗 ) )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 190 | 189 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) )  =  ( 𝐾 ‘ 𝑗 ) ) | 
						
							| 191 |  | fveq2 | ⊢ ( 𝑗  =  𝑚  →  ( 𝐾 ‘ 𝑗 )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 192 | 191 | fveq2d | ⊢ ( 𝑗  =  𝑚  →  ( abs ‘ ( 𝐾 ‘ 𝑗 ) )  =  ( abs ‘ ( 𝐾 ‘ 𝑚 ) ) ) | 
						
							| 193 | 192 191 | eqeq12d | ⊢ ( 𝑗  =  𝑚  →  ( ( abs ‘ ( 𝐾 ‘ 𝑗 ) )  =  ( 𝐾 ‘ 𝑗 )  ↔  ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  =  ( 𝐾 ‘ 𝑚 ) ) ) | 
						
							| 194 | 193 | rspccva | ⊢ ( ( ∀ 𝑗  ∈  ℕ0 ( abs ‘ ( 𝐾 ‘ 𝑗 ) )  =  ( 𝐾 ‘ 𝑗 )  ∧  𝑚  ∈  ℕ0 )  →  ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 195 | 190 194 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ0 )  →  ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 196 | 186 188 195 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) )  →  ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  =  ( 𝐾 ‘ 𝑚 ) ) | 
						
							| 197 | 196 | breq1d | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) )  →  ( ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ↔  ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) | 
						
							| 198 | 197 | ralbidva | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) | 
						
							| 199 | 164 | breq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ↔  ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) | 
						
							| 200 | 199 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) | 
						
							| 201 | 198 200 | bitr4di | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  ↔  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) | 
						
							| 202 | 1 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑗 )  =  𝐴 ) | 
						
							| 203 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑗 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 204 | 3 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑗  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 205 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐺 ‘ 𝑘 )  =  𝐵 ) | 
						
							| 206 | 5 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 207 | 6 | ad4ant14 | ⊢ ( ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐻 ‘ 𝑘 )  =  Σ 𝑗  ∈  ( 0 ... 𝑘 ) ( 𝐴  ·  ( 𝐺 ‘ ( 𝑘  −  𝑗 ) ) ) ) | 
						
							| 208 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  seq 0 (  +  ,  𝐾 )  ∈  dom   ⇝  ) | 
						
							| 209 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  seq 0 (  +  ,  𝐺 )  ∈  dom   ⇝  ) | 
						
							| 210 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  𝐸  ∈  ℝ+ ) | 
						
							| 211 | 200 | anbi2i | ⊢ ( ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) )  ↔  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) | 
						
							| 212 | 211 | anbi2i | ⊢ ( ( 𝜓  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  ↔  ( 𝜓  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) ) | 
						
							| 213 | 212 | biimpi | ⊢ ( ( 𝜓  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  ( 𝜓  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) ) | 
						
							| 214 | 213 | adantll | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  ( 𝜓  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑚 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) ) ) | 
						
							| 215 | 115 142 159 | 3jca | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑇 𝑤  ≤  𝑧 ) ) | 
						
							| 216 | 161 215 | jca | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 0  ≤  sup ( 𝑇 ,  ℝ ,   <  )  ∧  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑇 𝑤  ≤  𝑧 ) ) ) | 
						
							| 217 | 216 | adantr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  ( 0  ≤  sup ( 𝑇 ,  ℝ ,   <  )  ∧  ( 𝑇  ⊆  ℝ  ∧  𝑇  ≠  ∅  ∧  ∃ 𝑧  ∈  ℝ ∀ 𝑤  ∈  𝑇 𝑤  ≤  𝑧 ) ) ) | 
						
							| 218 | 202 203 204 205 206 207 208 209 210 10 11 214 217 | mertenslem1 | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑡  ∈  ℕ0  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) ) ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) | 
						
							| 219 | 218 | expr | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑡 ) ( 𝐾 ‘ 𝑛 )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 220 | 201 219 | sylbid | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑡  ∈  ℕ0 )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 221 | 220 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ∃ 𝑡  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑡 ) ( abs ‘ ( 𝐾 ‘ 𝑚 ) )  <  ( ( ( 𝐸  /  2 )  /  𝑠 )  /  ( sup ( 𝑇 ,  ℝ ,   <  )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 222 | 185 221 | mpd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) | 
						
							| 223 | 222 | ex | ⊢ ( 𝜑  →  ( 𝜓  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 224 | 11 223 | biimtrrid | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ℕ  ∧  ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 225 | 224 | expdimp | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ )  →  ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) ( 𝐺 ‘ 𝑘 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 226 | 87 225 | sylbid | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ℕ )  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 227 | 226 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑠 ) ( abs ‘ ( ( seq 0 (  +  ,  𝐺 ) ‘ 𝑚 )  −  Σ 𝑘  ∈  ℕ0 𝐵 ) )  <  ( ( 𝐸  /  2 )  /  ( Σ 𝑗  ∈  ℕ0 ( 𝐾 ‘ 𝑗 )  +  1 ) )  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) ) | 
						
							| 228 | 28 227 | mpd | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  ℕ0 ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑦 ) ( abs ‘ Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( 𝐴  ·  Σ 𝑘  ∈  ( ℤ≥ ‘ ( ( 𝑚  −  𝑗 )  +  1 ) ) 𝐵 ) )  <  𝐸 ) |