| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 3 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 4 |  | elico1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 5 | 4 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ( 𝐴 [,) 𝐵 ) )  →  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  <  𝐵 ) ) | 
						
							| 6 | 5 | simp1d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 7 | 1 2 3 6 | syl21anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐶  ∈  ℝ* ) | 
						
							| 8 | 5 | simp2d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 9 | 1 2 3 8 | syl21anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐴  ≤  𝐶 ) | 
						
							| 10 | 1 2 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 11 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 12 | 5 | simp3d | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  𝐶  ∈  ( 𝐴 [,) 𝐵 ) )  →  𝐶  <  𝐵 ) | 
						
							| 13 | 10 3 12 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐶  <  𝐵 ) | 
						
							| 14 |  | elioo1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 )  ↔  ¬  ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 16 | 15 | biimpa | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  ¬  ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 ) ) | 
						
							| 17 |  | 3anan32 | ⊢ ( ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ↔  ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  ∧  𝐴  <  𝐶 ) ) | 
						
							| 18 | 17 | notbii | ⊢ ( ¬  ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ↔  ¬  ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  ∧  𝐴  <  𝐶 ) ) | 
						
							| 19 |  | imnan | ⊢ ( ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  →  ¬  𝐴  <  𝐶 )  ↔  ¬  ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  ∧  𝐴  <  𝐶 ) ) | 
						
							| 20 | 18 19 | bitr4i | ⊢ ( ¬  ( 𝐶  ∈  ℝ*  ∧  𝐴  <  𝐶  ∧  𝐶  <  𝐵 )  ↔  ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  →  ¬  𝐴  <  𝐶 ) ) | 
						
							| 21 | 16 20 | sylib | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 )  →  ¬  𝐴  <  𝐶 ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  ∧  ( 𝐶  ∈  ℝ*  ∧  𝐶  <  𝐵 ) )  →  ¬  𝐴  <  𝐶 ) | 
						
							| 23 | 10 11 7 13 22 | syl22anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  ¬  𝐴  <  𝐶 ) | 
						
							| 24 |  | xeqlelt | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  →  ( 𝐴  =  𝐶  ↔  ( 𝐴  ≤  𝐶  ∧  ¬  𝐴  <  𝐶 ) ) ) | 
						
							| 25 | 24 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐶  ∈  ℝ* )  ∧  ( 𝐴  ≤  𝐶  ∧  ¬  𝐴  <  𝐶 ) )  →  𝐴  =  𝐶 ) | 
						
							| 26 | 1 7 9 23 25 | syl22anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐴  =  𝐶 ) | 
						
							| 27 | 26 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐴  =  𝐶 ) ) | 
						
							| 28 |  | eqcom | ⊢ ( 𝐴  =  𝐶  ↔  𝐶  =  𝐴 ) | 
						
							| 29 | 27 28 | imbitrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  =  𝐴 ) ) | 
						
							| 30 |  | pm5.6 | ⊢ ( ( ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ∧  ¬  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  =  𝐴 )  ↔  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ∨  𝐶  =  𝐴 ) ) ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ∨  𝐶  =  𝐴 ) ) ) | 
						
							| 32 |  | orcom | ⊢ ( ( 𝐶  ∈  ( 𝐴 (,) 𝐵 )  ∨  𝐶  =  𝐴 )  ↔  ( 𝐶  =  𝐴  ∨  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) ) | 
						
							| 33 | 31 32 | imbitrdi | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  →  ( 𝐶  =  𝐴  ∨  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) ) ) | 
						
							| 34 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐶  =  𝐴 ) | 
						
							| 35 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 36 | 34 35 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐶  ∈  ℝ* ) | 
						
							| 37 | 35 | xrleidd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐴  ≤  𝐴 ) | 
						
							| 38 | 37 34 | breqtrrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐴  ≤  𝐶 ) | 
						
							| 39 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐴  <  𝐵 ) | 
						
							| 40 | 34 39 | eqbrtrd | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐶  <  𝐵 ) | 
						
							| 41 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 42 | 35 41 4 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝐶  ∈  ℝ*  ∧  𝐴  ≤  𝐶  ∧  𝐶  <  𝐵 ) ) ) | 
						
							| 43 | 36 38 40 42 | mpbir3and | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  =  𝐴 )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 44 |  | ioossico | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ( 𝐴 [,) 𝐵 ) | 
						
							| 45 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 46 | 44 45 | sselid | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 47 | 43 46 | jaodan | ⊢ ( ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  ∧  ( 𝐶  =  𝐴  ∨  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( ( 𝐶  =  𝐴  ∨  𝐶  ∈  ( 𝐴 (,) 𝐵 ) )  →  𝐶  ∈  ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 49 | 33 48 | impbid | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  <  𝐵 )  →  ( 𝐶  ∈  ( 𝐴 [,) 𝐵 )  ↔  ( 𝐶  =  𝐴  ∨  𝐶  ∈  ( 𝐴 (,) 𝐵 ) ) ) ) |