Metamath Proof Explorer


Theorem elicoelioo

Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Assertion elicoelioo A * B * A < B C A B C = A C A B

Proof

Step Hyp Ref Expression
1 simpl1 A * B * A < B C A B ¬ C A B A *
2 simpl2 A * B * A < B C A B ¬ C A B B *
3 simprl A * B * A < B C A B ¬ C A B C A B
4 elico1 A * B * C A B C * A C C < B
5 4 biimpa A * B * C A B C * A C C < B
6 5 simp1d A * B * C A B C *
7 1 2 3 6 syl21anc A * B * A < B C A B ¬ C A B C *
8 5 simp2d A * B * C A B A C
9 1 2 3 8 syl21anc A * B * A < B C A B ¬ C A B A C
10 1 2 jca A * B * A < B C A B ¬ C A B A * B *
11 simprr A * B * A < B C A B ¬ C A B ¬ C A B
12 5 simp3d A * B * C A B C < B
13 10 3 12 syl2anc A * B * A < B C A B ¬ C A B C < B
14 elioo1 A * B * C A B C * A < C C < B
15 14 notbid A * B * ¬ C A B ¬ C * A < C C < B
16 15 biimpa A * B * ¬ C A B ¬ C * A < C C < B
17 3anan32 C * A < C C < B C * C < B A < C
18 17 notbii ¬ C * A < C C < B ¬ C * C < B A < C
19 imnan C * C < B ¬ A < C ¬ C * C < B A < C
20 18 19 bitr4i ¬ C * A < C C < B C * C < B ¬ A < C
21 16 20 sylib A * B * ¬ C A B C * C < B ¬ A < C
22 21 imp A * B * ¬ C A B C * C < B ¬ A < C
23 10 11 7 13 22 syl22anc A * B * A < B C A B ¬ C A B ¬ A < C
24 xeqlelt A * C * A = C A C ¬ A < C
25 24 biimpar A * C * A C ¬ A < C A = C
26 1 7 9 23 25 syl22anc A * B * A < B C A B ¬ C A B A = C
27 26 ex A * B * A < B C A B ¬ C A B A = C
28 eqcom A = C C = A
29 27 28 syl6ib A * B * A < B C A B ¬ C A B C = A
30 pm5.6 C A B ¬ C A B C = A C A B C A B C = A
31 29 30 sylib A * B * A < B C A B C A B C = A
32 orcom C A B C = A C = A C A B
33 31 32 syl6ib A * B * A < B C A B C = A C A B
34 simpr A * B * A < B C = A C = A
35 simpl1 A * B * A < B C = A A *
36 34 35 eqeltrd A * B * A < B C = A C *
37 35 xrleidd A * B * A < B C = A A A
38 37 34 breqtrrd A * B * A < B C = A A C
39 simpl3 A * B * A < B C = A A < B
40 34 39 eqbrtrd A * B * A < B C = A C < B
41 simpl2 A * B * A < B C = A B *
42 35 41 4 syl2anc A * B * A < B C = A C A B C * A C C < B
43 36 38 40 42 mpbir3and A * B * A < B C = A C A B
44 ioossico A B A B
45 simpr A * B * A < B C A B C A B
46 44 45 sseldi A * B * A < B C A B C A B
47 43 46 jaodan A * B * A < B C = A C A B C A B
48 47 ex A * B * A < B C = A C A B C A B
49 33 48 impbid A * B * A < B C A B C = A C A B