| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
simpl2 |
|
| 3 |
|
simprl |
|
| 4 |
|
elico1 |
|
| 5 |
4
|
biimpa |
|
| 6 |
5
|
simp1d |
|
| 7 |
1 2 3 6
|
syl21anc |
|
| 8 |
5
|
simp2d |
|
| 9 |
1 2 3 8
|
syl21anc |
|
| 10 |
1 2
|
jca |
|
| 11 |
|
simprr |
|
| 12 |
5
|
simp3d |
|
| 13 |
10 3 12
|
syl2anc |
|
| 14 |
|
elioo1 |
|
| 15 |
14
|
notbid |
|
| 16 |
15
|
biimpa |
|
| 17 |
|
3anan32 |
|
| 18 |
17
|
notbii |
|
| 19 |
|
imnan |
|
| 20 |
18 19
|
bitr4i |
|
| 21 |
16 20
|
sylib |
|
| 22 |
21
|
imp |
|
| 23 |
10 11 7 13 22
|
syl22anc |
|
| 24 |
|
xeqlelt |
|
| 25 |
24
|
biimpar |
|
| 26 |
1 7 9 23 25
|
syl22anc |
|
| 27 |
26
|
ex |
|
| 28 |
|
eqcom |
|
| 29 |
27 28
|
imbitrdi |
|
| 30 |
|
pm5.6 |
|
| 31 |
29 30
|
sylib |
|
| 32 |
|
orcom |
|
| 33 |
31 32
|
imbitrdi |
|
| 34 |
|
simpr |
|
| 35 |
|
simpl1 |
|
| 36 |
34 35
|
eqeltrd |
|
| 37 |
35
|
xrleidd |
|
| 38 |
37 34
|
breqtrrd |
|
| 39 |
|
simpl3 |
|
| 40 |
34 39
|
eqbrtrd |
|
| 41 |
|
simpl2 |
|
| 42 |
35 41 4
|
syl2anc |
|
| 43 |
36 38 40 42
|
mpbir3and |
|
| 44 |
|
ioossico |
|
| 45 |
|
simpr |
|
| 46 |
44 45
|
sselid |
|
| 47 |
43 46
|
jaodan |
|
| 48 |
47
|
ex |
|
| 49 |
33 48
|
impbid |
|