| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqger.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
eqger.r |
⊢ ∼ = ( 𝐺 ~QG 𝑌 ) |
| 3 |
|
eqgcpbl.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
nsgsubg |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 |
|
subgrcl |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐺 ∈ Grp ) |
| 8 |
|
simprl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐴 ∼ 𝐶 ) |
| 9 |
1
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 10 |
5 9
|
syl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ⊆ 𝑋 ) |
| 11 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 12 |
1 11 3 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐶 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) ) |
| 13 |
7 10 12
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 ∼ 𝐶 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) ) |
| 14 |
8 13
|
mpbid |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) ) |
| 15 |
14
|
simp1d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐴 ∈ 𝑋 ) |
| 16 |
|
simprr |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐵 ∼ 𝐷 ) |
| 17 |
1 11 3 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐵 ∼ 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) ) |
| 18 |
7 10 17
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐵 ∼ 𝐷 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) ) |
| 19 |
16 18
|
mpbid |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) ) |
| 20 |
19
|
simp1d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐵 ∈ 𝑋 ) |
| 21 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 22 |
7 15 20 21
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
| 23 |
14
|
simp2d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐶 ∈ 𝑋 ) |
| 24 |
19
|
simp2d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝐷 ∈ 𝑋 ) |
| 25 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( 𝐶 + 𝐷 ) ∈ 𝑋 ) |
| 26 |
7 23 24 25
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐶 + 𝐷 ) ∈ 𝑋 ) |
| 27 |
1 3 11
|
grpinvadd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 28 |
7 15 20 27
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) ) |
| 30 |
1 11
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 31 |
7 20 30
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 32 |
1 11
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 33 |
7 15 32
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 34 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 35 |
7 31 33 26 34
|
syl13anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 36 |
29 35
|
eqtrd |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ) |
| 37 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) |
| 38 |
7 33 23 24 37
|
syl13anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) |
| 39 |
38
|
oveq1d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) |
| 40 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ) |
| 41 |
7 33 23 40
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ) |
| 42 |
1 3
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 43 |
7 41 24 31 42
|
syl13anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + 𝐷 ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 44 |
39 43
|
eqtr3d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ) |
| 45 |
14
|
simp3d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ) |
| 46 |
19
|
simp3d |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ) |
| 47 |
|
simpl |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 48 |
1 3
|
nsgbi |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ↔ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) ) |
| 49 |
47 31 24 48
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + 𝐷 ) ∈ 𝑌 ↔ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) ) |
| 50 |
46 49
|
mpbid |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 51 |
3
|
subgcl |
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) ∈ 𝑌 ∧ ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 52 |
5 45 50 51
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝐶 ) + ( 𝐷 + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ) ∈ 𝑌 ) |
| 53 |
44 52
|
eqeltrd |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ) |
| 54 |
1 3
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ) |
| 55 |
7 33 26 54
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ) |
| 56 |
1 3
|
nsgbi |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑋 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) ) |
| 57 |
47 55 31 56
|
syl3anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) + ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ) ∈ 𝑌 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) ) |
| 58 |
53 57
|
mpbid |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + ( 𝐶 + 𝐷 ) ) ) ∈ 𝑌 ) |
| 59 |
36 58
|
eqeltrd |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) |
| 60 |
1 11 3 2
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) ) ) |
| 61 |
7 10 60
|
syl2anc |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ↔ ( ( 𝐴 + 𝐵 ) ∈ 𝑋 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( 𝐴 + 𝐵 ) ) + ( 𝐶 + 𝐷 ) ) ∈ 𝑌 ) ) ) |
| 62 |
22 26 59 61
|
mpbir3and |
⊢ ( ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) |
| 63 |
62
|
ex |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → ( ( 𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷 ) → ( 𝐴 + 𝐵 ) ∼ ( 𝐶 + 𝐷 ) ) ) |