| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 2 |
|
recnz |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 < 𝑁 ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 1 < 𝑁 ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) |
| 4 |
3
|
ad2ant2lr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ¬ ( 1 / 𝑁 ) ∈ ℤ ) |
| 5 |
|
facdiv |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |
| 6 |
5
|
3expa |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℕ ) |
| 7 |
6
|
nnzd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ 𝑁 ≤ 𝑀 ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) |
| 8 |
7
|
adantrl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) |
| 9 |
|
zsubcl |
⊢ ( ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ ∧ ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) |
| 10 |
9
|
ex |
⊢ ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( ( ( ! ‘ 𝑀 ) / 𝑁 ) ∈ ℤ → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) ) |
| 11 |
8 10
|
syl5com |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ) ) |
| 12 |
|
faccl |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ ) |
| 13 |
12
|
nncnd |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 14 |
|
peano2cn |
⊢ ( ( ! ‘ 𝑀 ) ∈ ℂ → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) |
| 15 |
13 14
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) |
| 16 |
15
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ) |
| 17 |
13
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 18 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 19 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 20 |
18 19
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) |
| 22 |
|
divsubdir |
⊢ ( ( ( ( ! ‘ 𝑀 ) + 1 ) ∈ ℂ ∧ ( ! ‘ 𝑀 ) ∈ ℂ ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ) |
| 23 |
16 17 21 22
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ) |
| 24 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 25 |
|
pncan2 |
⊢ ( ( ( ! ‘ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) = 1 ) |
| 26 |
13 24 25
|
sylancl |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) = 1 ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( 1 / 𝑁 ) ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) − ( ! ‘ 𝑀 ) ) / 𝑁 ) = ( 1 / 𝑁 ) ) |
| 29 |
23 28
|
eqtr3d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) = ( 1 / 𝑁 ) ) |
| 30 |
29
|
eleq1d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) − ( ( ! ‘ 𝑀 ) / 𝑁 ) ) ∈ ℤ ↔ ( 1 / 𝑁 ) ∈ ℤ ) ) |
| 31 |
11 30
|
sylibd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ( ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ → ( 1 / 𝑁 ) ∈ ℤ ) ) |
| 32 |
4 31
|
mtod |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ ) ∧ ( 1 < 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → ¬ ( ( ( ! ‘ 𝑀 ) + 1 ) / 𝑁 ) ∈ ℤ ) |