Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|
2 |
|
recnz |
|
3 |
1 2
|
sylan |
|
4 |
3
|
ad2ant2lr |
|
5 |
|
facdiv |
|
6 |
5
|
3expa |
|
7 |
6
|
nnzd |
|
8 |
7
|
adantrl |
|
9 |
|
zsubcl |
|
10 |
9
|
ex |
|
11 |
8 10
|
syl5com |
|
12 |
|
faccl |
|
13 |
12
|
nncnd |
|
14 |
|
peano2cn |
|
15 |
13 14
|
syl |
|
16 |
15
|
ad2antrr |
|
17 |
13
|
ad2antrr |
|
18 |
|
nncn |
|
19 |
|
nnne0 |
|
20 |
18 19
|
jca |
|
21 |
20
|
ad2antlr |
|
22 |
|
divsubdir |
|
23 |
16 17 21 22
|
syl3anc |
|
24 |
|
ax-1cn |
|
25 |
|
pncan2 |
|
26 |
13 24 25
|
sylancl |
|
27 |
26
|
oveq1d |
|
28 |
27
|
ad2antrr |
|
29 |
23 28
|
eqtr3d |
|
30 |
29
|
eleq1d |
|
31 |
11 30
|
sylibd |
|
32 |
4 31
|
mtod |
|