| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
|
| 2 |
|
fveq2 |
|
| 3 |
2
|
oveq1d |
|
| 4 |
3
|
eleq1d |
|
| 5 |
1 4
|
imbi12d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
breq2 |
|
| 8 |
|
fveq2 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
9
|
eleq1d |
|
| 11 |
7 10
|
imbi12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
breq2 |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
oveq1d |
|
| 16 |
15
|
eleq1d |
|
| 17 |
13 16
|
imbi12d |
|
| 18 |
17
|
imbi2d |
|
| 19 |
|
breq2 |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
oveq1d |
|
| 22 |
21
|
eleq1d |
|
| 23 |
19 22
|
imbi12d |
|
| 24 |
23
|
imbi2d |
|
| 25 |
|
nnnle0 |
|
| 26 |
25
|
pm2.21d |
|
| 27 |
|
nnre |
|
| 28 |
|
peano2nn0 |
|
| 29 |
28
|
nn0red |
|
| 30 |
|
leloe |
|
| 31 |
27 29 30
|
syl2an |
|
| 32 |
|
nnnn0 |
|
| 33 |
|
nn0leltp1 |
|
| 34 |
32 33
|
sylan |
|
| 35 |
|
nn0p1nn |
|
| 36 |
|
nnmulcl |
|
| 37 |
35 36
|
sylan2 |
|
| 38 |
37
|
expcom |
|
| 39 |
38
|
adantl |
|
| 40 |
|
faccl |
|
| 41 |
40
|
nncnd |
|
| 42 |
28
|
nn0cnd |
|
| 43 |
|
nncn |
|
| 44 |
|
nnne0 |
|
| 45 |
43 44
|
jca |
|
| 46 |
45
|
adantr |
|
| 47 |
|
div23 |
|
| 48 |
41 42 46 47
|
syl2an23an |
|
| 49 |
48
|
eleq1d |
|
| 50 |
39 49
|
sylibrd |
|
| 51 |
50
|
imim2d |
|
| 52 |
51
|
com23 |
|
| 53 |
34 52
|
sylbird |
|
| 54 |
41
|
adantl |
|
| 55 |
43
|
adantr |
|
| 56 |
44
|
adantr |
|
| 57 |
54 55 56
|
divcan4d |
|
| 58 |
40
|
adantl |
|
| 59 |
57 58
|
eqeltrd |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
oveq1d |
|
| 62 |
61
|
eleq1d |
|
| 63 |
59 62
|
syl5ibcom |
|
| 64 |
63
|
a1dd |
|
| 65 |
53 64
|
jaod |
|
| 66 |
31 65
|
sylbid |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
com34 |
|
| 69 |
68
|
com12 |
|
| 70 |
69
|
imp4d |
|
| 71 |
|
facp1 |
|
| 72 |
71
|
oveq1d |
|
| 73 |
72
|
eleq1d |
|
| 74 |
70 73
|
sylibrd |
|
| 75 |
74
|
exp4d |
|
| 76 |
75
|
a2d |
|
| 77 |
6 12 18 24 26 76
|
nn0ind |
|
| 78 |
77
|
3imp |
|