Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|
2 |
|
fveq2 |
|
3 |
2
|
oveq1d |
|
4 |
3
|
eleq1d |
|
5 |
1 4
|
imbi12d |
|
6 |
5
|
imbi2d |
|
7 |
|
breq2 |
|
8 |
|
fveq2 |
|
9 |
8
|
oveq1d |
|
10 |
9
|
eleq1d |
|
11 |
7 10
|
imbi12d |
|
12 |
11
|
imbi2d |
|
13 |
|
breq2 |
|
14 |
|
fveq2 |
|
15 |
14
|
oveq1d |
|
16 |
15
|
eleq1d |
|
17 |
13 16
|
imbi12d |
|
18 |
17
|
imbi2d |
|
19 |
|
breq2 |
|
20 |
|
fveq2 |
|
21 |
20
|
oveq1d |
|
22 |
21
|
eleq1d |
|
23 |
19 22
|
imbi12d |
|
24 |
23
|
imbi2d |
|
25 |
|
nnnle0 |
|
26 |
25
|
pm2.21d |
|
27 |
|
nnre |
|
28 |
|
peano2nn0 |
|
29 |
28
|
nn0red |
|
30 |
|
leloe |
|
31 |
27 29 30
|
syl2an |
|
32 |
|
nnnn0 |
|
33 |
|
nn0leltp1 |
|
34 |
32 33
|
sylan |
|
35 |
|
nn0p1nn |
|
36 |
|
nnmulcl |
|
37 |
35 36
|
sylan2 |
|
38 |
37
|
expcom |
|
39 |
38
|
adantl |
|
40 |
|
faccl |
|
41 |
40
|
nncnd |
|
42 |
28
|
nn0cnd |
|
43 |
|
nncn |
|
44 |
|
nnne0 |
|
45 |
43 44
|
jca |
|
46 |
45
|
adantr |
|
47 |
|
div23 |
|
48 |
41 42 46 47
|
syl2an23an |
|
49 |
48
|
eleq1d |
|
50 |
39 49
|
sylibrd |
|
51 |
50
|
imim2d |
|
52 |
51
|
com23 |
|
53 |
34 52
|
sylbird |
|
54 |
41
|
adantl |
|
55 |
43
|
adantr |
|
56 |
44
|
adantr |
|
57 |
54 55 56
|
divcan4d |
|
58 |
40
|
adantl |
|
59 |
57 58
|
eqeltrd |
|
60 |
|
oveq2 |
|
61 |
60
|
oveq1d |
|
62 |
61
|
eleq1d |
|
63 |
59 62
|
syl5ibcom |
|
64 |
63
|
a1dd |
|
65 |
53 64
|
jaod |
|
66 |
31 65
|
sylbid |
|
67 |
66
|
ex |
|
68 |
67
|
com34 |
|
69 |
68
|
com12 |
|
70 |
69
|
imp4d |
|
71 |
|
facp1 |
|
72 |
71
|
oveq1d |
|
73 |
72
|
eleq1d |
|
74 |
70 73
|
sylibrd |
|
75 |
74
|
exp4d |
|
76 |
75
|
a2d |
|
77 |
6 12 18 24 26 76
|
nn0ind |
|
78 |
77
|
3imp |
|