| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptco1f1o.a |
⊢ 𝐴 = ( 𝑅 ↑m 𝐸 ) |
| 2 |
|
fmptco1f1o.b |
⊢ 𝐵 = ( 𝑅 ↑m 𝐷 ) |
| 3 |
|
fmptco1f1o.f |
⊢ 𝐹 = ( 𝑓 ∈ 𝐴 ↦ ( 𝑓 ∘ 𝑇 ) ) |
| 4 |
|
fmptco1f1o.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 5 |
|
fmptco1f1o.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 6 |
|
fmptco1f1o.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑋 ) |
| 7 |
|
fmptco1f1o.t |
⊢ ( 𝜑 → 𝑇 : 𝐷 –1-1-onto→ 𝐸 ) |
| 8 |
3
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑓 ∈ 𝐴 ↦ ( 𝑓 ∘ 𝑇 ) ) ) |
| 9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑅 ∈ 𝑋 ) |
| 10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝐷 ∈ 𝑉 ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ 𝐴 ) |
| 12 |
11 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ ( 𝑅 ↑m 𝐸 ) ) |
| 13 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝐸 ) → 𝑓 : 𝐸 ⟶ 𝑅 ) |
| 14 |
12 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑓 : 𝐸 ⟶ 𝑅 ) |
| 15 |
|
f1of |
⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸 → 𝑇 : 𝐷 ⟶ 𝐸 ) |
| 16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝑇 : 𝐷 ⟶ 𝐸 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → 𝑇 : 𝐷 ⟶ 𝐸 ) |
| 18 |
|
fco |
⊢ ( ( 𝑓 : 𝐸 ⟶ 𝑅 ∧ 𝑇 : 𝐷 ⟶ 𝐸 ) → ( 𝑓 ∘ 𝑇 ) : 𝐷 ⟶ 𝑅 ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ( 𝑓 ∘ 𝑇 ) : 𝐷 ⟶ 𝑅 ) |
| 20 |
|
elmapg |
⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝐷 ∈ 𝑉 ) → ( ( 𝑓 ∘ 𝑇 ) ∈ ( 𝑅 ↑m 𝐷 ) ↔ ( 𝑓 ∘ 𝑇 ) : 𝐷 ⟶ 𝑅 ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ 𝐷 ∈ 𝑉 ) ∧ ( 𝑓 ∘ 𝑇 ) : 𝐷 ⟶ 𝑅 ) → ( 𝑓 ∘ 𝑇 ) ∈ ( 𝑅 ↑m 𝐷 ) ) |
| 22 |
9 10 19 21
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ( 𝑓 ∘ 𝑇 ) ∈ ( 𝑅 ↑m 𝐷 ) ) |
| 23 |
22 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) → ( 𝑓 ∘ 𝑇 ) ∈ 𝐵 ) |
| 24 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑅 ∈ 𝑋 ) |
| 25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝐸 ∈ 𝑊 ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
| 27 |
26 2
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( 𝑅 ↑m 𝐷 ) ) |
| 28 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑅 ↑m 𝐷 ) → 𝑔 : 𝐷 ⟶ 𝑅 ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐷 ⟶ 𝑅 ) |
| 30 |
|
f1ocnv |
⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸 → ◡ 𝑇 : 𝐸 –1-1-onto→ 𝐷 ) |
| 31 |
|
f1of |
⊢ ( ◡ 𝑇 : 𝐸 –1-1-onto→ 𝐷 → ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) |
| 32 |
7 30 31
|
3syl |
⊢ ( 𝜑 → ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) |
| 34 |
|
fco |
⊢ ( ( 𝑔 : 𝐷 ⟶ 𝑅 ∧ ◡ 𝑇 : 𝐸 ⟶ 𝐷 ) → ( 𝑔 ∘ ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) |
| 35 |
29 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) |
| 36 |
|
elmapg |
⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑔 ∘ ◡ 𝑇 ) ∈ ( 𝑅 ↑m 𝐸 ) ↔ ( 𝑔 ∘ ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) ) |
| 37 |
36
|
biimpar |
⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑔 ∘ ◡ 𝑇 ) : 𝐸 ⟶ 𝑅 ) → ( 𝑔 ∘ ◡ 𝑇 ) ∈ ( 𝑅 ↑m 𝐸 ) ) |
| 38 |
24 25 35 37
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ◡ 𝑇 ) ∈ ( 𝑅 ↑m 𝐸 ) ) |
| 39 |
38 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ◡ 𝑇 ) ∈ 𝐴 ) |
| 40 |
|
coass |
⊢ ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑔 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) |
| 41 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑇 : 𝐷 –1-1-onto→ 𝐸 ) |
| 42 |
|
f1ococnv1 |
⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸 → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ 𝐷 ) ) |
| 43 |
42
|
coeq2d |
⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸 → ( 𝑔 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) = ( 𝑔 ∘ ( I ↾ 𝐷 ) ) ) |
| 44 |
41 43
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) = ( 𝑔 ∘ ( I ↾ 𝐷 ) ) ) |
| 45 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐷 ⟶ 𝑅 ) |
| 46 |
|
fcoi1 |
⊢ ( 𝑔 : 𝐷 ⟶ 𝑅 → ( 𝑔 ∘ ( I ↾ 𝐷 ) ) = 𝑔 ) |
| 47 |
45 46
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ( I ↾ 𝐷 ) ) = 𝑔 ) |
| 48 |
44 47
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) = 𝑔 ) |
| 49 |
40 48
|
eqtr2id |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑔 = ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
| 50 |
49
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 = ( 𝑓 ∘ 𝑇 ) ↔ ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑓 ∘ 𝑇 ) ) ) |
| 51 |
|
eqcom |
⊢ ( ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑓 ∘ 𝑇 ) ↔ ( 𝑓 ∘ 𝑇 ) = ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
| 52 |
51
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑓 ∘ 𝑇 ) ↔ ( 𝑓 ∘ 𝑇 ) = ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) ) |
| 53 |
|
f1ofo |
⊢ ( 𝑇 : 𝐷 –1-1-onto→ 𝐸 → 𝑇 : 𝐷 –onto→ 𝐸 ) |
| 54 |
41 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑇 : 𝐷 –onto→ 𝐸 ) |
| 55 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ 𝐴 ) |
| 56 |
55 1
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( 𝑅 ↑m 𝐸 ) ) |
| 57 |
|
elmapfn |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m 𝐸 ) → 𝑓 Fn 𝐸 ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → 𝑓 Fn 𝐸 ) |
| 59 |
|
elmapfn |
⊢ ( ( 𝑔 ∘ ◡ 𝑇 ) ∈ ( 𝑅 ↑m 𝐸 ) → ( 𝑔 ∘ ◡ 𝑇 ) Fn 𝐸 ) |
| 60 |
38 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ◡ 𝑇 ) Fn 𝐸 ) |
| 61 |
60
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑔 ∘ ◡ 𝑇 ) Fn 𝐸 ) |
| 62 |
|
cocan2 |
⊢ ( ( 𝑇 : 𝐷 –onto→ 𝐸 ∧ 𝑓 Fn 𝐸 ∧ ( 𝑔 ∘ ◡ 𝑇 ) Fn 𝐸 ) → ( ( 𝑓 ∘ 𝑇 ) = ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ↔ 𝑓 = ( 𝑔 ∘ ◡ 𝑇 ) ) ) |
| 63 |
54 58 61 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝑓 ∘ 𝑇 ) = ( ( 𝑔 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ↔ 𝑓 = ( 𝑔 ∘ ◡ 𝑇 ) ) ) |
| 64 |
50 52 63
|
3bitrrd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 = ( 𝑔 ∘ ◡ 𝑇 ) ↔ 𝑔 = ( 𝑓 ∘ 𝑇 ) ) ) |
| 65 |
64
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐴 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 = ( 𝑔 ∘ ◡ 𝑇 ) ↔ 𝑔 = ( 𝑓 ∘ 𝑇 ) ) ) |
| 66 |
8 23 39 65
|
f1o3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = ( 𝑔 ∈ 𝐵 ↦ ( 𝑔 ∘ ◡ 𝑇 ) ) ) ) |
| 67 |
66
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |