| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptco1f1o.a |
|
| 2 |
|
fmptco1f1o.b |
|
| 3 |
|
fmptco1f1o.f |
|
| 4 |
|
fmptco1f1o.d |
|
| 5 |
|
fmptco1f1o.e |
|
| 6 |
|
fmptco1f1o.r |
|
| 7 |
|
fmptco1f1o.t |
|
| 8 |
3
|
a1i |
|
| 9 |
6
|
adantr |
|
| 10 |
4
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
11 1
|
eleqtrdi |
|
| 13 |
|
elmapi |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
f1of |
|
| 16 |
7 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
fco |
|
| 19 |
14 17 18
|
syl2anc |
|
| 20 |
|
elmapg |
|
| 21 |
20
|
biimpar |
|
| 22 |
9 10 19 21
|
syl21anc |
|
| 23 |
22 2
|
eleqtrrdi |
|
| 24 |
6
|
adantr |
|
| 25 |
5
|
adantr |
|
| 26 |
|
simpr |
|
| 27 |
26 2
|
eleqtrdi |
|
| 28 |
|
elmapi |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
f1ocnv |
|
| 31 |
|
f1of |
|
| 32 |
7 30 31
|
3syl |
|
| 33 |
32
|
adantr |
|
| 34 |
|
fco |
|
| 35 |
29 33 34
|
syl2anc |
|
| 36 |
|
elmapg |
|
| 37 |
36
|
biimpar |
|
| 38 |
24 25 35 37
|
syl21anc |
|
| 39 |
38 1
|
eleqtrrdi |
|
| 40 |
|
coass |
|
| 41 |
7
|
ad2antrr |
|
| 42 |
|
f1ococnv1 |
|
| 43 |
42
|
coeq2d |
|
| 44 |
41 43
|
syl |
|
| 45 |
29
|
adantlr |
|
| 46 |
|
fcoi1 |
|
| 47 |
45 46
|
syl |
|
| 48 |
44 47
|
eqtrd |
|
| 49 |
40 48
|
eqtr2id |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
|
eqcom |
|
| 52 |
51
|
a1i |
|
| 53 |
|
f1ofo |
|
| 54 |
41 53
|
syl |
|
| 55 |
|
simplr |
|
| 56 |
55 1
|
eleqtrdi |
|
| 57 |
|
elmapfn |
|
| 58 |
56 57
|
syl |
|
| 59 |
|
elmapfn |
|
| 60 |
38 59
|
syl |
|
| 61 |
60
|
adantlr |
|
| 62 |
|
cocan2 |
|
| 63 |
54 58 61 62
|
syl3anc |
|
| 64 |
50 52 63
|
3bitrrd |
|
| 65 |
64
|
anasss |
|
| 66 |
8 23 39 65
|
f1o3d |
|
| 67 |
66
|
simpld |
|