Step |
Hyp |
Ref |
Expression |
1 |
|
fmptco1f1o.a |
|
2 |
|
fmptco1f1o.b |
|
3 |
|
fmptco1f1o.f |
|
4 |
|
fmptco1f1o.d |
|
5 |
|
fmptco1f1o.e |
|
6 |
|
fmptco1f1o.r |
|
7 |
|
fmptco1f1o.t |
|
8 |
3
|
a1i |
|
9 |
6
|
adantr |
|
10 |
4
|
adantr |
|
11 |
|
simpr |
|
12 |
11 1
|
eleqtrdi |
|
13 |
|
elmapi |
|
14 |
12 13
|
syl |
|
15 |
|
f1of |
|
16 |
7 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
|
fco |
|
19 |
14 17 18
|
syl2anc |
|
20 |
|
elmapg |
|
21 |
20
|
biimpar |
|
22 |
9 10 19 21
|
syl21anc |
|
23 |
22 2
|
eleqtrrdi |
|
24 |
6
|
adantr |
|
25 |
5
|
adantr |
|
26 |
|
simpr |
|
27 |
26 2
|
eleqtrdi |
|
28 |
|
elmapi |
|
29 |
27 28
|
syl |
|
30 |
|
f1ocnv |
|
31 |
|
f1of |
|
32 |
7 30 31
|
3syl |
|
33 |
32
|
adantr |
|
34 |
|
fco |
|
35 |
29 33 34
|
syl2anc |
|
36 |
|
elmapg |
|
37 |
36
|
biimpar |
|
38 |
24 25 35 37
|
syl21anc |
|
39 |
38 1
|
eleqtrrdi |
|
40 |
|
coass |
|
41 |
7
|
ad2antrr |
|
42 |
|
f1ococnv1 |
|
43 |
42
|
coeq2d |
|
44 |
41 43
|
syl |
|
45 |
29
|
adantlr |
|
46 |
|
fcoi1 |
|
47 |
45 46
|
syl |
|
48 |
44 47
|
eqtrd |
|
49 |
40 48
|
eqtr2id |
|
50 |
49
|
eqeq1d |
|
51 |
|
eqcom |
|
52 |
51
|
a1i |
|
53 |
|
f1ofo |
|
54 |
41 53
|
syl |
|
55 |
|
simplr |
|
56 |
55 1
|
eleqtrdi |
|
57 |
|
elmapfn |
|
58 |
56 57
|
syl |
|
59 |
|
elmapfn |
|
60 |
38 59
|
syl |
|
61 |
60
|
adantlr |
|
62 |
|
cocan2 |
|
63 |
54 58 61 62
|
syl3anc |
|
64 |
50 52 63
|
3bitrrd |
|
65 |
64
|
anasss |
|
66 |
8 23 39 65
|
f1o3d |
|
67 |
66
|
simpld |
|