| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprfung.1 |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , 𝐺 ) |
| 2 |
1
|
fprfung |
⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) → Fun 𝐹 ) |
| 3 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹 ) → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) |
| 4 |
2 3
|
sylan |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ) |
| 5 |
|
df-frecs |
⊢ frecs ( 𝑅 , 𝐴 , 𝐺 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 6 |
1 5
|
eqtri |
⊢ 𝐹 = ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 7 |
6
|
eleq2i |
⊢ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
| 8 |
|
eluni |
⊢ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ↔ ∃ 𝑔 ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝐹 ↔ ∃ 𝑔 ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) |
| 10 |
4 9
|
sylib |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ∃ 𝑔 ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) |
| 11 |
|
eqid |
⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } |
| 12 |
11
|
frrlem1 |
⊢ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } = { 𝑔 ∣ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) } |
| 13 |
12
|
eqabri |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ↔ ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 14 |
13
|
biimpi |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) → ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 16 |
15
|
adantl |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) → ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) ) |
| 17 |
|
3simpa |
⊢ ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) |
| 18 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → Fun 𝐹 ) |
| 19 |
|
simprlr |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
| 20 |
|
elssuni |
⊢ ( 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } → 𝑔 ⊆ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑔 ⊆ ∪ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) |
| 22 |
21 6
|
sseqtrrdi |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑔 ⊆ 𝐹 ) |
| 23 |
|
predeq3 |
⊢ ( 𝑤 = 𝑋 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 24 |
23
|
sseq1d |
⊢ ( 𝑤 = 𝑋 → ( Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ↔ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝑧 ) ) |
| 25 |
|
simprrr |
⊢ ( ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) → ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) |
| 27 |
|
simplr |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑋 ∈ dom 𝐹 ) |
| 28 |
|
simprll |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ) |
| 29 |
|
df-br |
⊢ ( 𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) ↔ 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ) |
| 30 |
28 29
|
sylibr |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) ) |
| 31 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
| 32 |
|
breldmg |
⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑋 ) ∈ V ∧ 𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) ) → 𝑋 ∈ dom 𝑔 ) |
| 33 |
31 32
|
mp3an2 |
⊢ ( ( 𝑋 ∈ dom 𝐹 ∧ 𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) ) → 𝑋 ∈ dom 𝑔 ) |
| 34 |
27 30 33
|
syl2anc |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑋 ∈ dom 𝑔 ) |
| 35 |
|
simprrl |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑔 Fn 𝑧 ) |
| 36 |
35
|
fndmd |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → dom 𝑔 = 𝑧 ) |
| 37 |
34 36
|
eleqtrd |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → 𝑋 ∈ 𝑧 ) |
| 38 |
24 26 37
|
rspcdva |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝑧 ) |
| 39 |
38 36
|
sseqtrrd |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝑔 ) |
| 40 |
|
fun2ssres |
⊢ ( ( Fun 𝐹 ∧ 𝑔 ⊆ 𝐹 ∧ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ dom 𝑔 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 41 |
18 22 39 40
|
syl3anc |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) = ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 42 |
|
vex |
⊢ 𝑔 ∈ V |
| 43 |
42
|
resex |
⊢ ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V |
| 44 |
41 43
|
eqeltrdi |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ∧ ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |
| 45 |
44
|
expr |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) → ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) ) |
| 46 |
17 45
|
syl5 |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) → ( ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) ) |
| 47 |
46
|
exlimdv |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) → ( ∃ 𝑧 ( 𝑔 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐴 ∧ ∀ 𝑤 ∈ 𝑧 Pred ( 𝑅 , 𝐴 , 𝑤 ) ⊆ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑧 ( 𝑔 ‘ 𝑤 ) = ( 𝑤 𝐺 ( 𝑔 ↾ Pred ( 𝑅 , 𝐴 , 𝑤 ) ) ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) ) |
| 48 |
16 47
|
mpd |
⊢ ( ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) ∧ ( 〈 𝑋 , ( 𝐹 ‘ 𝑋 ) 〉 ∈ 𝑔 ∧ 𝑔 ∈ { 𝑓 ∣ ∃ 𝑥 ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑦 ∈ 𝑥 Pred ( 𝑅 , 𝐴 , 𝑦 ) ⊆ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐺 ( 𝑓 ↾ Pred ( 𝑅 , 𝐴 , 𝑦 ) ) ) ) } ) ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |
| 49 |
10 48
|
exlimddv |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |