| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppcurry2.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) |
| 2 |
|
fsuppcurry2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) |
| 3 |
|
fsuppcurry2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
fsuppcurry2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 5 |
|
fsuppcurry2.f |
⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 × 𝐵 ) ) |
| 6 |
|
fsuppcurry2.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 7 |
|
fsuppcurry2.1 |
⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) |
| 8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐹 𝐶 ) = ( 𝑦 𝐹 𝐶 ) ) |
| 9 |
8
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝑥 𝐹 𝐶 ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝑦 𝐹 𝐶 ) ) |
| 10 |
1 9
|
eqtri |
⊢ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ ( 𝑦 𝐹 𝐶 ) ) |
| 11 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ ( 𝑦 𝐹 𝐶 ) ) ∈ V ) |
| 12 |
10 11
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 13 |
1
|
funmpt2 |
⊢ Fun 𝐺 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 15 |
|
fo1st |
⊢ 1st : V –onto→ V |
| 16 |
|
fofun |
⊢ ( 1st : V –onto→ V → Fun 1st ) |
| 17 |
15 16
|
ax-mp |
⊢ Fun 1st |
| 18 |
|
funres |
⊢ ( Fun 1st → Fun ( 1st ↾ ( V × V ) ) ) |
| 19 |
17 18
|
mp1i |
⊢ ( 𝜑 → Fun ( 1st ↾ ( V × V ) ) ) |
| 20 |
7
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 21 |
|
imafi |
⊢ ( ( Fun ( 1st ↾ ( V × V ) ) ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) → ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ∈ Fin ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ∈ Fin ) |
| 23 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 𝐹 𝐶 ) ∈ V ) |
| 24 |
23 10
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ V ) |
| 25 |
|
eldif |
⊢ ( 𝑦 ∈ ( 𝐴 ∖ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → 𝑦 ∈ 𝐴 ) |
| 27 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → 𝐶 ∈ 𝐵 ) |
| 28 |
26 27
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → 〈 𝑦 , 𝐶 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 29 |
|
df-ov |
⊢ ( 𝑦 𝐹 𝐶 ) = ( 𝐹 ‘ 〈 𝑦 , 𝐶 〉 ) |
| 30 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝑦 𝐹 𝐶 ) ∈ V ) |
| 31 |
1 8 26 30
|
fvmptd3 |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝑦 𝐹 𝐶 ) ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) |
| 33 |
32
|
neqned |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) |
| 34 |
31 33
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝑦 𝐹 𝐶 ) ≠ 𝑍 ) |
| 35 |
29 34
|
eqnetrrid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝐹 ‘ 〈 𝑦 , 𝐶 〉 ) ≠ 𝑍 ) |
| 36 |
3 4
|
xpexd |
⊢ ( 𝜑 → ( 𝐴 × 𝐵 ) ∈ V ) |
| 37 |
|
elsuppfn |
⊢ ( ( 𝐹 Fn ( 𝐴 × 𝐵 ) ∧ ( 𝐴 × 𝐵 ) ∈ V ∧ 𝑍 ∈ 𝑈 ) → ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 〈 𝑦 , 𝐶 〉 ) ≠ 𝑍 ) ) ) |
| 38 |
5 36 2 37
|
syl3anc |
⊢ ( 𝜑 → ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 〈 𝑦 , 𝐶 〉 ) ≠ 𝑍 ) ) ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 〈 𝑦 , 𝐶 〉 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 〈 𝑦 , 𝐶 〉 ) ≠ 𝑍 ) ) ) |
| 40 |
28 35 39
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → 〈 𝑦 , 𝐶 〉 ∈ ( 𝐹 supp 𝑍 ) ) |
| 41 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → 𝑧 = 〈 𝑦 , 𝐶 〉 ) |
| 42 |
41
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → ( ( 1st ↾ ( V × V ) ) ‘ 𝑧 ) = ( ( 1st ↾ ( V × V ) ) ‘ 〈 𝑦 , 𝐶 〉 ) ) |
| 43 |
|
xpss |
⊢ ( 𝐴 × 𝐵 ) ⊆ ( V × V ) |
| 44 |
28
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → 〈 𝑦 , 𝐶 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 45 |
43 44
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → 〈 𝑦 , 𝐶 〉 ∈ ( V × V ) ) |
| 46 |
45
|
fvresd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → ( ( 1st ↾ ( V × V ) ) ‘ 〈 𝑦 , 𝐶 〉 ) = ( 1st ‘ 〈 𝑦 , 𝐶 〉 ) ) |
| 47 |
26
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → 𝑦 ∈ 𝐴 ) |
| 48 |
27
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → 𝐶 ∈ 𝐵 ) |
| 49 |
|
op1stg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 1st ‘ 〈 𝑦 , 𝐶 〉 ) = 𝑦 ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → ( 1st ‘ 〈 𝑦 , 𝐶 〉 ) = 𝑦 ) |
| 51 |
42 46 50
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ∧ 𝑧 = 〈 𝑦 , 𝐶 〉 ) → ( ( 1st ↾ ( V × V ) ) ‘ 𝑧 ) = 𝑦 ) |
| 52 |
40 51
|
rspcedeq1vd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ∃ 𝑧 ∈ ( 𝐹 supp 𝑍 ) ( ( 1st ↾ ( V × V ) ) ‘ 𝑧 ) = 𝑦 ) |
| 53 |
|
fofn |
⊢ ( 1st : V –onto→ V → 1st Fn V ) |
| 54 |
|
fnresin |
⊢ ( 1st Fn V → ( 1st ↾ ( V × V ) ) Fn ( V ∩ ( V × V ) ) ) |
| 55 |
15 53 54
|
mp2b |
⊢ ( 1st ↾ ( V × V ) ) Fn ( V ∩ ( V × V ) ) |
| 56 |
|
ssv |
⊢ ( V × V ) ⊆ V |
| 57 |
|
sseqin2 |
⊢ ( ( V × V ) ⊆ V ↔ ( V ∩ ( V × V ) ) = ( V × V ) ) |
| 58 |
56 57
|
mpbi |
⊢ ( V ∩ ( V × V ) ) = ( V × V ) |
| 59 |
58
|
fneq2i |
⊢ ( ( 1st ↾ ( V × V ) ) Fn ( V ∩ ( V × V ) ) ↔ ( 1st ↾ ( V × V ) ) Fn ( V × V ) ) |
| 60 |
55 59
|
mpbi |
⊢ ( 1st ↾ ( V × V ) ) Fn ( V × V ) |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( 1st ↾ ( V × V ) ) Fn ( V × V ) ) |
| 62 |
|
suppssdm |
⊢ ( 𝐹 supp 𝑍 ) ⊆ dom 𝐹 |
| 63 |
5
|
fndmd |
⊢ ( 𝜑 → dom 𝐹 = ( 𝐴 × 𝐵 ) ) |
| 64 |
62 63
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 65 |
64 43
|
sstrdi |
⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( V × V ) ) |
| 66 |
61 65
|
fvelimabd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ↔ ∃ 𝑧 ∈ ( 𝐹 supp 𝑍 ) ( ( 1st ↾ ( V × V ) ) ‘ 𝑧 ) = 𝑦 ) ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → ( 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ↔ ∃ 𝑧 ∈ ( 𝐹 supp 𝑍 ) ( ( 1st ↾ ( V × V ) ) ‘ 𝑧 ) = 𝑦 ) ) |
| 68 |
52 67
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) → 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) |
| 69 |
68
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝐺 ‘ 𝑦 ) = 𝑍 → 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ) |
| 70 |
69
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) → ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ) |
| 71 |
70
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) = 𝑍 ) |
| 72 |
25 71
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 ∖ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) = 𝑍 ) |
| 73 |
24 72
|
suppss |
⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ⊆ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) |
| 74 |
|
suppssfifsupp |
⊢ ( ( ( 𝐺 ∈ V ∧ Fun 𝐺 ∧ 𝑍 ∈ 𝑈 ) ∧ ( ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ⊆ ( ( 1st ↾ ( V × V ) ) “ ( 𝐹 supp 𝑍 ) ) ) ) → 𝐺 finSupp 𝑍 ) |
| 75 |
12 14 2 22 73 74
|
syl32anc |
⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) |