| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝐴 ∈ ℝ* ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝐵 ∈ ℝ* ) |
| 3 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
iccleub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝑥 ≤ 𝐵 ) |
| 6 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝐶 ∈ ℝ* ) |
| 7 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 8 |
|
iccgelb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
| 9 |
2 6 7 8
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝐵 ≤ 𝑥 ) |
| 10 |
|
eliccxr |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → 𝑥 ∈ ℝ* ) |
| 11 |
3 10
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝑥 ∈ ℝ* ) |
| 12 |
11 2
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
| 13 |
|
xrletri3 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ≤ 𝐵 ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 15 |
5 9 14
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) → 𝑥 = 𝐵 ) |
| 16 |
15
|
ex |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 = 𝐵 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 = 𝐵 ) ) |
| 18 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 19 |
|
simpll2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 20 |
|
simplrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 21 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 22 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 23 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 |
22 24
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 26 |
18 19 20 21 25
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 27 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝐶 ∈ ℝ* ) |
| 28 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝐵 ≤ 𝐶 ) |
| 29 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
| 30 |
|
lbicc2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 32 |
29 31
|
eqeltrd |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ≤ 𝐶 ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 33 |
19 27 28 21 32
|
syl31anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 34 |
26 33
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) |
| 35 |
34
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) → ( 𝑥 = 𝐵 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) ) |
| 36 |
17 35
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) → ( ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 37 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) ) |
| 38 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
| 39 |
36 37 38
|
3bitr4g |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) → ( 𝑥 ∈ ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) ↔ 𝑥 ∈ { 𝐵 } ) ) |
| 40 |
39
|
eqrdv |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶 ) ) → ( ( 𝐴 [,] 𝐵 ) ∩ ( 𝐵 [,] 𝐶 ) ) = { 𝐵 } ) |