| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfznelfzo |
⊢ ( ( 𝑌 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) ) |
| 2 |
|
fvinim0ffz |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ ↔ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) ) |
| 3 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) |
| 4 |
|
fveq2 |
⊢ ( 0 = 𝑌 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 5 |
4
|
eqcoms |
⊢ ( 𝑌 = 0 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑌 = 0 → ( ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 7 |
6
|
notbid |
⊢ ( 𝑌 = 0 → ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 8 |
7
|
biimpd |
⊢ ( 𝑌 = 0 → ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 9 |
|
ffn |
⊢ ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 → 𝐹 Fn ( 0 ... 𝐾 ) ) |
| 10 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 11 |
|
fzoss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ 𝐾 ) ⊆ ( 0 ..^ 𝐾 ) ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 1 ..^ 𝐾 ) ⊆ ( 0 ..^ 𝐾 ) ) |
| 13 |
|
fzossfz |
⊢ ( 0 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) |
| 14 |
12 13
|
sstrdi |
⊢ ( 𝐾 ∈ ℕ0 → ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) |
| 15 |
|
fvelimab |
⊢ ( ( 𝐹 Fn ( 0 ... 𝐾 ) ∧ ( 1 ..^ 𝐾 ) ⊆ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 16 |
9 14 15
|
syl2an |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 17 |
16
|
notbid |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 18 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 19 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 20 |
19
|
notbid |
⊢ ( 𝑧 = 𝑋 → ( ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 |
20
|
rspcva |
⊢ ( ( 𝑋 ∈ ( 1 ..^ 𝐾 ) ∧ ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) → ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 22 |
|
pm2.21 |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 23 |
22
|
a1d |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 24 |
23
|
2a1d |
⊢ ( ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 25 |
21 24
|
syl |
⊢ ( ( 𝑋 ∈ ( 1 ..^ 𝐾 ) ∧ ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 26 |
25
|
expcom |
⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 27 |
26
|
com24 |
⊢ ( ∀ 𝑧 ∈ ( 1 ..^ 𝐾 ) ¬ ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 28 |
18 27
|
sylbir |
⊢ ( ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 29 |
28
|
com12 |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ∃ 𝑧 ∈ ( 1 ..^ 𝐾 ) ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑌 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 30 |
17 29
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 31 |
30
|
com12 |
⊢ ( ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 32 |
8 31
|
syl6com |
⊢ ( ¬ ( 𝐹 ‘ 0 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 33 |
3 32
|
sylbi |
⊢ ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( 𝑌 = 0 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 35 |
34
|
com12 |
⊢ ( 𝑌 = 0 → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 36 |
|
df-nel |
⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) |
| 37 |
|
fveq2 |
⊢ ( 𝐾 = 𝑌 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 38 |
37
|
eqcoms |
⊢ ( 𝑌 = 𝐾 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑌 = 𝐾 → ( ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 40 |
39
|
notbid |
⊢ ( 𝑌 = 𝐾 → ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 41 |
40
|
biimpd |
⊢ ( 𝑌 = 𝐾 → ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ¬ ( 𝐹 ‘ 𝑌 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) ) |
| 42 |
41 31
|
syl6com |
⊢ ( ¬ ( 𝐹 ‘ 𝐾 ) ∈ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 43 |
36 42
|
sylbi |
⊢ ( ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( 𝑌 = 𝐾 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 45 |
44
|
com12 |
⊢ ( 𝑌 = 𝐾 → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 46 |
35 45
|
jaoi |
⊢ ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 47 |
46
|
com13 |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 ‘ 0 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ∧ ( 𝐹 ‘ 𝐾 ) ∉ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 48 |
2 47
|
sylbid |
⊢ ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 49 |
48
|
com14 |
⊢ ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 50 |
49
|
com12 |
⊢ ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 51 |
50
|
com15 |
⊢ ( 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 52 |
|
elfznelfzo |
⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) ) |
| 53 |
|
eqtr3 |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 0 ) → 𝑋 = 𝑌 ) |
| 54 |
|
2a1 |
⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 55 |
54
|
2a1d |
⊢ ( 𝑋 = 𝑌 → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 56 |
53 55
|
syl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 0 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 57 |
5
|
adantl |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 58 |
|
fveq2 |
⊢ ( 𝐾 = 𝑋 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 59 |
58
|
eqcoms |
⊢ ( 𝑋 = 𝐾 → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 61 |
57 60
|
neeq12d |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ↔ ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 62 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 63 |
|
pm2.24 |
⊢ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 64 |
63
|
eqcoms |
⊢ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑌 ) ) |
| 65 |
64
|
com12 |
⊢ ( ¬ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 66 |
62 65
|
sylbi |
⊢ ( ( 𝐹 ‘ 𝑌 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 67 |
61 66
|
biimtrdi |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 68 |
67
|
2a1d |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 0 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 0 = 𝑋 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 70 |
69
|
eqcoms |
⊢ ( 𝑋 = 0 → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( 𝐹 ‘ 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 72 |
38
|
adantl |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( 𝐹 ‘ 𝐾 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 73 |
71 72
|
neeq12d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) ↔ ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ) ) |
| 74 |
|
df-ne |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 75 |
74 22
|
sylbi |
⊢ ( ( 𝐹 ‘ 𝑋 ) ≠ ( 𝐹 ‘ 𝑌 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 76 |
73 75
|
biimtrdi |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 77 |
76
|
2a1d |
⊢ ( ( 𝑋 = 0 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 78 |
|
eqtr3 |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 𝐾 ) → 𝑋 = 𝑌 ) |
| 79 |
78 55
|
syl |
⊢ ( ( 𝑋 = 𝐾 ∧ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 80 |
56 68 77 79
|
ccase |
⊢ ( ( ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) ∧ ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 81 |
80
|
ex |
⊢ ( ( 𝑋 = 0 ∨ 𝑋 = 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 82 |
52 81
|
syl |
⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 83 |
82
|
expcom |
⊢ ( ¬ 𝑋 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 84 |
51 83
|
pm2.61i |
⊢ ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 85 |
84
|
com12 |
⊢ ( ( 𝑌 = 0 ∨ 𝑌 = 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 86 |
1 85
|
syl |
⊢ ( ( 𝑌 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 87 |
86
|
ex |
⊢ ( 𝑌 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 88 |
87
|
com23 |
⊢ ( 𝑌 ∈ ( 0 ... 𝐾 ) → ( 𝑋 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) ) |
| 89 |
88
|
impcom |
⊢ ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 90 |
89
|
com12 |
⊢ ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |
| 91 |
90
|
com25 |
⊢ ( ¬ 𝑌 ∈ ( 1 ..^ 𝐾 ) → ( ( 𝐹 ‘ 0 ) ≠ ( 𝐹 ‘ 𝐾 ) → ( ( 𝐹 : ( 0 ... 𝐾 ) ⟶ 𝑉 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( 𝐹 “ { 0 , 𝐾 } ) ∩ ( 𝐹 “ ( 1 ..^ 𝐾 ) ) ) = ∅ → ( ( 𝑋 ∈ ( 0 ... 𝐾 ) ∧ 𝑌 ∈ ( 0 ... 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) ) |