| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfznelfzo |
|- ( ( Y e. ( 0 ... K ) /\ -. Y e. ( 1 ..^ K ) ) -> ( Y = 0 \/ Y = K ) ) |
| 2 |
|
fvinim0ffz |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) <-> ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) ) ) |
| 3 |
|
df-nel |
|- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) ) |
| 4 |
|
fveq2 |
|- ( 0 = Y -> ( F ` 0 ) = ( F ` Y ) ) |
| 5 |
4
|
eqcoms |
|- ( Y = 0 -> ( F ` 0 ) = ( F ` Y ) ) |
| 6 |
5
|
eleq1d |
|- ( Y = 0 -> ( ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) <-> ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 7 |
6
|
notbid |
|- ( Y = 0 -> ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 8 |
7
|
biimpd |
|- ( Y = 0 -> ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) -> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 9 |
|
ffn |
|- ( F : ( 0 ... K ) --> V -> F Fn ( 0 ... K ) ) |
| 10 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
| 11 |
|
fzoss1 |
|- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ..^ K ) C_ ( 0 ..^ K ) ) |
| 12 |
10 11
|
mp1i |
|- ( K e. NN0 -> ( 1 ..^ K ) C_ ( 0 ..^ K ) ) |
| 13 |
|
fzossfz |
|- ( 0 ..^ K ) C_ ( 0 ... K ) |
| 14 |
12 13
|
sstrdi |
|- ( K e. NN0 -> ( 1 ..^ K ) C_ ( 0 ... K ) ) |
| 15 |
|
fvelimab |
|- ( ( F Fn ( 0 ... K ) /\ ( 1 ..^ K ) C_ ( 0 ... K ) ) -> ( ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
| 16 |
9 14 15
|
syl2an |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
| 17 |
16
|
notbid |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) <-> -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) ) |
| 18 |
|
ralnex |
|- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) <-> -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) ) |
| 19 |
|
fveqeq2 |
|- ( z = X -> ( ( F ` z ) = ( F ` Y ) <-> ( F ` X ) = ( F ` Y ) ) ) |
| 20 |
19
|
notbid |
|- ( z = X -> ( -. ( F ` z ) = ( F ` Y ) <-> -. ( F ` X ) = ( F ` Y ) ) ) |
| 21 |
20
|
rspcva |
|- ( ( X e. ( 1 ..^ K ) /\ A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) ) -> -. ( F ` X ) = ( F ` Y ) ) |
| 22 |
|
pm2.21 |
|- ( -. ( F ` X ) = ( F ` Y ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 23 |
22
|
a1d |
|- ( -. ( F ` X ) = ( F ` Y ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 24 |
23
|
2a1d |
|- ( -. ( F ` X ) = ( F ` Y ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 25 |
21 24
|
syl |
|- ( ( X e. ( 1 ..^ K ) /\ A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 26 |
25
|
expcom |
|- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) -> ( X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 27 |
26
|
com24 |
|- ( A. z e. ( 1 ..^ K ) -. ( F ` z ) = ( F ` Y ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 28 |
18 27
|
sylbir |
|- ( -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 29 |
28
|
com12 |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. E. z e. ( 1 ..^ K ) ( F ` z ) = ( F ` Y ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 30 |
17 29
|
sylbid |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 31 |
30
|
com12 |
|- ( -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 32 |
8 31
|
syl6com |
|- ( -. ( F ` 0 ) e. ( F " ( 1 ..^ K ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 33 |
3 32
|
sylbi |
|- ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 34 |
33
|
adantr |
|- ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( Y = 0 -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 35 |
34
|
com12 |
|- ( Y = 0 -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 36 |
|
df-nel |
|- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) <-> -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) ) |
| 37 |
|
fveq2 |
|- ( K = Y -> ( F ` K ) = ( F ` Y ) ) |
| 38 |
37
|
eqcoms |
|- ( Y = K -> ( F ` K ) = ( F ` Y ) ) |
| 39 |
38
|
eleq1d |
|- ( Y = K -> ( ( F ` K ) e. ( F " ( 1 ..^ K ) ) <-> ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 40 |
39
|
notbid |
|- ( Y = K -> ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) <-> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 41 |
40
|
biimpd |
|- ( Y = K -> ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) -> -. ( F ` Y ) e. ( F " ( 1 ..^ K ) ) ) ) |
| 42 |
41 31
|
syl6com |
|- ( -. ( F ` K ) e. ( F " ( 1 ..^ K ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 43 |
36 42
|
sylbi |
|- ( ( F ` K ) e/ ( F " ( 1 ..^ K ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 44 |
43
|
adantl |
|- ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( Y = K -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 45 |
44
|
com12 |
|- ( Y = K -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 46 |
35 45
|
jaoi |
|- ( ( Y = 0 \/ Y = K ) -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 47 |
46
|
com13 |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F ` 0 ) e/ ( F " ( 1 ..^ K ) ) /\ ( F ` K ) e/ ( F " ( 1 ..^ K ) ) ) -> ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 48 |
2 47
|
sylbid |
|- ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 49 |
48
|
com14 |
|- ( X e. ( 0 ... K ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 50 |
49
|
com12 |
|- ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( X e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 51 |
50
|
com15 |
|- ( X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 52 |
|
elfznelfzo |
|- ( ( X e. ( 0 ... K ) /\ -. X e. ( 1 ..^ K ) ) -> ( X = 0 \/ X = K ) ) |
| 53 |
|
eqtr3 |
|- ( ( X = 0 /\ Y = 0 ) -> X = Y ) |
| 54 |
|
2a1 |
|- ( X = Y -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 55 |
54
|
2a1d |
|- ( X = Y -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 56 |
53 55
|
syl |
|- ( ( X = 0 /\ Y = 0 ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 57 |
5
|
adantl |
|- ( ( X = K /\ Y = 0 ) -> ( F ` 0 ) = ( F ` Y ) ) |
| 58 |
|
fveq2 |
|- ( K = X -> ( F ` K ) = ( F ` X ) ) |
| 59 |
58
|
eqcoms |
|- ( X = K -> ( F ` K ) = ( F ` X ) ) |
| 60 |
59
|
adantr |
|- ( ( X = K /\ Y = 0 ) -> ( F ` K ) = ( F ` X ) ) |
| 61 |
57 60
|
neeq12d |
|- ( ( X = K /\ Y = 0 ) -> ( ( F ` 0 ) =/= ( F ` K ) <-> ( F ` Y ) =/= ( F ` X ) ) ) |
| 62 |
|
df-ne |
|- ( ( F ` Y ) =/= ( F ` X ) <-> -. ( F ` Y ) = ( F ` X ) ) |
| 63 |
|
pm2.24 |
|- ( ( F ` Y ) = ( F ` X ) -> ( -. ( F ` Y ) = ( F ` X ) -> X = Y ) ) |
| 64 |
63
|
eqcoms |
|- ( ( F ` X ) = ( F ` Y ) -> ( -. ( F ` Y ) = ( F ` X ) -> X = Y ) ) |
| 65 |
64
|
com12 |
|- ( -. ( F ` Y ) = ( F ` X ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 66 |
62 65
|
sylbi |
|- ( ( F ` Y ) =/= ( F ` X ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 67 |
61 66
|
biimtrdi |
|- ( ( X = K /\ Y = 0 ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 68 |
67
|
2a1d |
|- ( ( X = K /\ Y = 0 ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 69 |
|
fveq2 |
|- ( 0 = X -> ( F ` 0 ) = ( F ` X ) ) |
| 70 |
69
|
eqcoms |
|- ( X = 0 -> ( F ` 0 ) = ( F ` X ) ) |
| 71 |
70
|
adantr |
|- ( ( X = 0 /\ Y = K ) -> ( F ` 0 ) = ( F ` X ) ) |
| 72 |
38
|
adantl |
|- ( ( X = 0 /\ Y = K ) -> ( F ` K ) = ( F ` Y ) ) |
| 73 |
71 72
|
neeq12d |
|- ( ( X = 0 /\ Y = K ) -> ( ( F ` 0 ) =/= ( F ` K ) <-> ( F ` X ) =/= ( F ` Y ) ) ) |
| 74 |
|
df-ne |
|- ( ( F ` X ) =/= ( F ` Y ) <-> -. ( F ` X ) = ( F ` Y ) ) |
| 75 |
74 22
|
sylbi |
|- ( ( F ` X ) =/= ( F ` Y ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) |
| 76 |
73 75
|
biimtrdi |
|- ( ( X = 0 /\ Y = K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) |
| 77 |
76
|
2a1d |
|- ( ( X = 0 /\ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 78 |
|
eqtr3 |
|- ( ( X = K /\ Y = K ) -> X = Y ) |
| 79 |
78 55
|
syl |
|- ( ( X = K /\ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 80 |
56 68 77 79
|
ccase |
|- ( ( ( X = 0 \/ X = K ) /\ ( Y = 0 \/ Y = K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) |
| 81 |
80
|
ex |
|- ( ( X = 0 \/ X = K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 82 |
52 81
|
syl |
|- ( ( X e. ( 0 ... K ) /\ -. X e. ( 1 ..^ K ) ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 83 |
82
|
expcom |
|- ( -. X e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 84 |
51 83
|
pm2.61i |
|- ( X e. ( 0 ... K ) -> ( ( Y = 0 \/ Y = K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 85 |
84
|
com12 |
|- ( ( Y = 0 \/ Y = K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 86 |
1 85
|
syl |
|- ( ( Y e. ( 0 ... K ) /\ -. Y e. ( 1 ..^ K ) ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 87 |
86
|
ex |
|- ( Y e. ( 0 ... K ) -> ( -. Y e. ( 1 ..^ K ) -> ( X e. ( 0 ... K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 88 |
87
|
com23 |
|- ( Y e. ( 0 ... K ) -> ( X e. ( 0 ... K ) -> ( -. Y e. ( 1 ..^ K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) ) |
| 89 |
88
|
impcom |
|- ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( -. Y e. ( 1 ..^ K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 90 |
89
|
com12 |
|- ( -. Y e. ( 1 ..^ K ) -> ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |
| 91 |
90
|
com25 |
|- ( -. Y e. ( 1 ..^ K ) -> ( ( F ` 0 ) =/= ( F ` K ) -> ( ( F : ( 0 ... K ) --> V /\ K e. NN0 ) -> ( ( ( F " { 0 , K } ) i^i ( F " ( 1 ..^ K ) ) ) = (/) -> ( ( X e. ( 0 ... K ) /\ Y e. ( 0 ... K ) ) -> ( ( F ` X ) = ( F ` Y ) -> X = Y ) ) ) ) ) ) |