Step |
Hyp |
Ref |
Expression |
1 |
|
ismtyhmeo.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝑀 ) |
2 |
|
ismtyhmeo.2 |
⊢ 𝐾 = ( MetOpen ‘ 𝑁 ) |
3 |
|
ismtyhmeolem.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
4 |
|
ismtyhmeolem.4 |
⊢ ( 𝜑 → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
5 |
|
ismtyhmeolem.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ) |
6 |
|
isismty |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
7 |
3 4 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) ↔ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
8 |
5 7
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑀 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) 𝑁 ( 𝐹 ‘ 𝑦 ) ) ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
10 |
|
f1of |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ) |
14 |
|
ismtycnv |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) ) |
15 |
3 4 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑀 Ismty 𝑁 ) → ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) ) |
16 |
5 15
|
mpd |
⊢ ( 𝜑 → ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → 𝑤 ∈ 𝑌 ) |
19 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → 𝑟 ∈ ℝ* ) |
20 |
|
ismtyima |
⊢ ( ( ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) ∧ 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ◡ 𝐹 ∈ ( 𝑁 Ismty 𝑀 ) ) ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) = ( ( ◡ 𝐹 ‘ 𝑤 ) ( ball ‘ 𝑀 ) 𝑟 ) ) |
21 |
12 13 17 18 19 20
|
syl32anc |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) = ( ( ◡ 𝐹 ‘ 𝑤 ) ( ball ‘ 𝑀 ) 𝑟 ) ) |
22 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
23 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
24 |
9 22 23
|
3syl |
⊢ ( 𝜑 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
25 |
|
simpl |
⊢ ( ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) → 𝑤 ∈ 𝑌 ) |
26 |
|
ffvelrn |
⊢ ( ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑤 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) |
27 |
24 25 26
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 ‘ 𝑤 ) ∈ 𝑋 ) |
28 |
1
|
blopn |
⊢ ( ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ◡ 𝐹 ‘ 𝑤 ) ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( ( ◡ 𝐹 ‘ 𝑤 ) ( ball ‘ 𝑀 ) 𝑟 ) ∈ 𝐽 ) |
29 |
13 27 19 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ( ( ◡ 𝐹 ‘ 𝑤 ) ( ball ‘ 𝑀 ) 𝑟 ) ∈ 𝐽 ) |
30 |
21 29
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ 𝑌 ∧ 𝑟 ∈ ℝ* ) ) → ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) ∈ 𝐽 ) |
31 |
30
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑌 ∀ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) ∈ 𝐽 ) |
32 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑤 , 𝑟 〉 → ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) = ( ( ball ‘ 𝑁 ) ‘ 〈 𝑤 , 𝑟 〉 ) ) |
33 |
|
df-ov |
⊢ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) = ( ( ball ‘ 𝑁 ) ‘ 〈 𝑤 , 𝑟 〉 ) |
34 |
32 33
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑤 , 𝑟 〉 → ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) = ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) |
35 |
34
|
imaeq2d |
⊢ ( 𝑧 = 〈 𝑤 , 𝑟 〉 → ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) = ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) ) |
36 |
35
|
eleq1d |
⊢ ( 𝑧 = 〈 𝑤 , 𝑟 〉 → ( ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) ∈ 𝐽 ) ) |
37 |
36
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝑌 × ℝ* ) ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ↔ ∀ 𝑤 ∈ 𝑌 ∀ 𝑟 ∈ ℝ* ( ◡ 𝐹 “ ( 𝑤 ( ball ‘ 𝑁 ) 𝑟 ) ) ∈ 𝐽 ) |
38 |
31 37
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑌 × ℝ* ) ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ) |
39 |
|
blf |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → ( ball ‘ 𝑁 ) : ( 𝑌 × ℝ* ) ⟶ 𝒫 𝑌 ) |
40 |
|
ffn |
⊢ ( ( ball ‘ 𝑁 ) : ( 𝑌 × ℝ* ) ⟶ 𝒫 𝑌 → ( ball ‘ 𝑁 ) Fn ( 𝑌 × ℝ* ) ) |
41 |
|
imaeq2 |
⊢ ( 𝑢 = ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) → ( ◡ 𝐹 “ 𝑢 ) = ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ) |
42 |
41
|
eleq1d |
⊢ ( 𝑢 = ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) → ( ( ◡ 𝐹 “ 𝑢 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ) ) |
43 |
42
|
ralrn |
⊢ ( ( ball ‘ 𝑁 ) Fn ( 𝑌 × ℝ* ) → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝑁 ) ( ◡ 𝐹 “ 𝑢 ) ∈ 𝐽 ↔ ∀ 𝑧 ∈ ( 𝑌 × ℝ* ) ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ) ) |
44 |
4 39 40 43
|
4syl |
⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ran ( ball ‘ 𝑁 ) ( ◡ 𝐹 “ 𝑢 ) ∈ 𝐽 ↔ ∀ 𝑧 ∈ ( 𝑌 × ℝ* ) ( ◡ 𝐹 “ ( ( ball ‘ 𝑁 ) ‘ 𝑧 ) ) ∈ 𝐽 ) ) |
45 |
38 44
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ran ( ball ‘ 𝑁 ) ( ◡ 𝐹 “ 𝑢 ) ∈ 𝐽 ) |
46 |
1
|
mopntopon |
⊢ ( 𝑀 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
47 |
3 46
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
48 |
2
|
mopnval |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝑁 ) ) ) |
49 |
4 48
|
syl |
⊢ ( 𝜑 → 𝐾 = ( topGen ‘ ran ( ball ‘ 𝑁 ) ) ) |
50 |
2
|
mopntopon |
⊢ ( 𝑁 ∈ ( ∞Met ‘ 𝑌 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
51 |
4 50
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
52 |
47 49 51
|
tgcn |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ran ( ball ‘ 𝑁 ) ( ◡ 𝐹 “ 𝑢 ) ∈ 𝐽 ) ) ) |
53 |
11 45 52
|
mpbir2and |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |