Metamath Proof Explorer


Theorem ismtyhmeolem

Description: Lemma for ismtyhmeo . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses ismtyhmeo.1 J=MetOpenM
ismtyhmeo.2 K=MetOpenN
ismtyhmeolem.3 φM∞MetX
ismtyhmeolem.4 φN∞MetY
ismtyhmeolem.5 φFMIsmtyN
Assertion ismtyhmeolem φFJCnK

Proof

Step Hyp Ref Expression
1 ismtyhmeo.1 J=MetOpenM
2 ismtyhmeo.2 K=MetOpenN
3 ismtyhmeolem.3 φM∞MetX
4 ismtyhmeolem.4 φN∞MetY
5 ismtyhmeolem.5 φFMIsmtyN
6 isismty M∞MetXN∞MetYFMIsmtyNF:X1-1 ontoYxXyXxMy=FxNFy
7 3 4 6 syl2anc φFMIsmtyNF:X1-1 ontoYxXyXxMy=FxNFy
8 5 7 mpbid φF:X1-1 ontoYxXyXxMy=FxNFy
9 8 simpld φF:X1-1 ontoY
10 f1of F:X1-1 ontoYF:XY
11 9 10 syl φF:XY
12 4 adantr φwYr*N∞MetY
13 3 adantr φwYr*M∞MetX
14 ismtycnv M∞MetXN∞MetYFMIsmtyNF-1NIsmtyM
15 3 4 14 syl2anc φFMIsmtyNF-1NIsmtyM
16 5 15 mpd φF-1NIsmtyM
17 16 adantr φwYr*F-1NIsmtyM
18 simprl φwYr*wY
19 simprr φwYr*r*
20 ismtyima N∞MetYM∞MetXF-1NIsmtyMwYr*F-1wballNr=F-1wballMr
21 12 13 17 18 19 20 syl32anc φwYr*F-1wballNr=F-1wballMr
22 f1ocnv F:X1-1 ontoYF-1:Y1-1 ontoX
23 f1of F-1:Y1-1 ontoXF-1:YX
24 9 22 23 3syl φF-1:YX
25 simpl wYr*wY
26 ffvelcdm F-1:YXwYF-1wX
27 24 25 26 syl2an φwYr*F-1wX
28 1 blopn M∞MetXF-1wXr*F-1wballMrJ
29 13 27 19 28 syl3anc φwYr*F-1wballMrJ
30 21 29 eqeltrd φwYr*F-1wballNrJ
31 30 ralrimivva φwYr*F-1wballNrJ
32 fveq2 z=wrballNz=ballNwr
33 df-ov wballNr=ballNwr
34 32 33 eqtr4di z=wrballNz=wballNr
35 34 imaeq2d z=wrF-1ballNz=F-1wballNr
36 35 eleq1d z=wrF-1ballNzJF-1wballNrJ
37 36 ralxp zY×*F-1ballNzJwYr*F-1wballNrJ
38 31 37 sylibr φzY×*F-1ballNzJ
39 blf N∞MetYballN:Y×*𝒫Y
40 ffn ballN:Y×*𝒫YballNFnY×*
41 imaeq2 u=ballNzF-1u=F-1ballNz
42 41 eleq1d u=ballNzF-1uJF-1ballNzJ
43 42 ralrn ballNFnY×*uranballNF-1uJzY×*F-1ballNzJ
44 4 39 40 43 4syl φuranballNF-1uJzY×*F-1ballNzJ
45 38 44 mpbird φuranballNF-1uJ
46 1 mopntopon M∞MetXJTopOnX
47 3 46 syl φJTopOnX
48 2 mopnval N∞MetYK=topGenranballN
49 4 48 syl φK=topGenranballN
50 2 mopntopon N∞MetYKTopOnY
51 4 50 syl φKTopOnY
52 47 49 51 tgcn φFJCnKF:XYuranballNF-1uJ
53 11 45 52 mpbir2and φFJCnK