Description: Lemma for ismtyhmeo . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 12-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismtyhmeo.1 | |
|
ismtyhmeo.2 | |
||
ismtyhmeolem.3 | |
||
ismtyhmeolem.4 | |
||
ismtyhmeolem.5 | |
||
Assertion | ismtyhmeolem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismtyhmeo.1 | |
|
2 | ismtyhmeo.2 | |
|
3 | ismtyhmeolem.3 | |
|
4 | ismtyhmeolem.4 | |
|
5 | ismtyhmeolem.5 | |
|
6 | isismty | |
|
7 | 3 4 6 | syl2anc | |
8 | 5 7 | mpbid | |
9 | 8 | simpld | |
10 | f1of | |
|
11 | 9 10 | syl | |
12 | 4 | adantr | |
13 | 3 | adantr | |
14 | ismtycnv | |
|
15 | 3 4 14 | syl2anc | |
16 | 5 15 | mpd | |
17 | 16 | adantr | |
18 | simprl | |
|
19 | simprr | |
|
20 | ismtyima | |
|
21 | 12 13 17 18 19 20 | syl32anc | |
22 | f1ocnv | |
|
23 | f1of | |
|
24 | 9 22 23 | 3syl | |
25 | simpl | |
|
26 | ffvelcdm | |
|
27 | 24 25 26 | syl2an | |
28 | 1 | blopn | |
29 | 13 27 19 28 | syl3anc | |
30 | 21 29 | eqeltrd | |
31 | 30 | ralrimivva | |
32 | fveq2 | |
|
33 | df-ov | |
|
34 | 32 33 | eqtr4di | |
35 | 34 | imaeq2d | |
36 | 35 | eleq1d | |
37 | 36 | ralxp | |
38 | 31 37 | sylibr | |
39 | blf | |
|
40 | ffn | |
|
41 | imaeq2 | |
|
42 | 41 | eleq1d | |
43 | 42 | ralrn | |
44 | 4 39 40 43 | 4syl | |
45 | 38 44 | mpbird | |
46 | 1 | mopntopon | |
47 | 3 46 | syl | |
48 | 2 | mopnval | |
49 | 4 48 | syl | |
50 | 2 | mopntopon | |
51 | 4 50 | syl | |
52 | 47 49 51 | tgcn | |
53 | 11 45 52 | mpbir2and | |