Step |
Hyp |
Ref |
Expression |
1 |
|
isubgr3stgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isubgr3stgr.u |
⊢ 𝑈 = ( 𝐺 NeighbVtx 𝑋 ) |
3 |
|
isubgr3stgr.c |
⊢ 𝐶 = ( 𝐺 ClNeighbVtx 𝑋 ) |
4 |
|
isubgr3stgr.n |
⊢ 𝑁 ∈ ℕ0 |
5 |
|
isubgr3stgr.s |
⊢ 𝑆 = ( StarGr ‘ 𝑁 ) |
6 |
|
isubgr3stgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝑆 ) |
7 |
1 2 3 4 5 6
|
isubgr3stgrlem2 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ∃ 𝑓 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) |
8 |
|
f1odm |
⊢ ( 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) → dom 𝑓 = 𝑈 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → 𝑋 ∈ 𝑉 ) |
11 |
|
c0ex |
⊢ 0 ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → 0 ∈ V ) |
13 |
|
neldifsnd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → ¬ 0 ∈ ( 𝑊 ∖ { 0 } ) ) |
14 |
|
df-nel |
⊢ ( 0 ∉ ( 𝑊 ∖ { 0 } ) ↔ ¬ 0 ∈ ( 𝑊 ∖ { 0 } ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → 0 ∉ ( 𝑊 ∖ { 0 } ) ) |
16 |
|
eqid |
⊢ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) = ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) |
17 |
1 2 3 16
|
isubgr3stgrlem1 |
⊢ ( ( 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ∧ 𝑋 ∈ 𝑉 ∧ ( 0 ∈ V ∧ 0 ∉ ( 𝑊 ∖ { 0 } ) ) ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) |
18 |
9 10 12 15 17
|
syl112anc |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) |
19 |
18
|
ex |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) ) |
20 |
|
f1of |
⊢ ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 ⟶ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 ⟶ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) |
22 |
3
|
ovexi |
⊢ 𝐶 ∈ V |
23 |
22
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → 𝐶 ∈ V ) |
24 |
21 23
|
fexd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ∈ V ) |
25 |
5 6
|
stgrvtx0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ 𝑊 ) |
26 |
4 25
|
mp1i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → 0 ∈ 𝑊 ) |
27 |
26
|
snssd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → { 0 } ⊆ 𝑊 ) |
28 |
|
undifr |
⊢ ( { 0 } ⊆ 𝑊 ↔ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) = 𝑊 ) |
29 |
27 28
|
sylib |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) = 𝑊 ) |
30 |
29
|
f1oeq3d |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ↔ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ) ) |
31 |
30
|
biimpa |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ) |
32 |
31
|
3adant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ) |
33 |
|
simp12 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → 𝑋 ∈ 𝑉 ) |
34 |
11
|
a1i |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → 0 ∈ V ) |
35 |
|
nbgrnself2 |
⊢ 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) |
36 |
|
df-nel |
⊢ ( 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
37 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑋 ) ) |
38 |
36 37
|
xchbinxr |
⊢ ( 𝑋 ∉ ( 𝐺 NeighbVtx 𝑋 ) ↔ ¬ 𝑋 ∈ 𝑈 ) |
39 |
35 38
|
mpbi |
⊢ ¬ 𝑋 ∈ 𝑈 |
40 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑈 → ( 𝑋 ∈ dom 𝑓 ↔ 𝑋 ∈ 𝑈 ) ) |
41 |
40
|
notbid |
⊢ ( dom 𝑓 = 𝑈 → ( ¬ 𝑋 ∈ dom 𝑓 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( ¬ 𝑋 ∈ dom 𝑓 ↔ ¬ 𝑋 ∈ 𝑈 ) ) |
43 |
39 42
|
mpbiri |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ¬ 𝑋 ∈ dom 𝑓 ) |
44 |
|
fsnunfv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 0 ∈ V ∧ ¬ 𝑋 ∈ dom 𝑓 ) → ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) = 0 ) |
45 |
33 34 43 44
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) = 0 ) |
46 |
32 45
|
jca |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ∧ ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) = 0 ) ) |
47 |
|
f1oeq1 |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) → ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ↔ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ) ) |
48 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) → ( 𝑔 ‘ 𝑋 ) = ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) → ( ( 𝑔 ‘ 𝑋 ) = 0 ↔ ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) = 0 ) ) |
50 |
47 49
|
anbi12d |
⊢ ( 𝑔 = ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) → ( ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ↔ ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ 𝑊 ∧ ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) ‘ 𝑋 ) = 0 ) ) ) |
51 |
24 46 50
|
spcedv |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) ∧ ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) ∧ dom 𝑓 = 𝑈 ) → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) |
52 |
51
|
3exp |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( ( 𝑓 ∪ { 〈 𝑋 , 0 〉 } ) : 𝐶 –1-1-onto→ ( ( 𝑊 ∖ { 0 } ) ∪ { 0 } ) → ( dom 𝑓 = 𝑈 → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) ) ) |
53 |
19 52
|
syld |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) → ( dom 𝑓 = 𝑈 → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) ) ) |
54 |
8 53
|
mpdi |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) ) |
55 |
54
|
exlimdv |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ( ∃ 𝑓 𝑓 : 𝑈 –1-1-onto→ ( 𝑊 ∖ { 0 } ) → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) ) |
56 |
7 55
|
mpd |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ ( ♯ ‘ 𝑈 ) = 𝑁 ) → ∃ 𝑔 ( 𝑔 : 𝐶 –1-1-onto→ 𝑊 ∧ ( 𝑔 ‘ 𝑋 ) = 0 ) ) |