| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lhprelat3.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | lhprelat3.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | lhprelat3.s | ⊢  <   =  ( lt ‘ 𝐾 ) | 
						
							| 4 |  | lhprelat3.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | lhprelat3.c | ⊢ 𝐶  =  (  ⋖  ‘ 𝐾 ) | 
						
							| 6 |  | lhprelat3.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑝  ∈  ( Atoms ‘ 𝐾 ) ) | 
						
							| 8 |  | simpll1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝐾  ∈  HL ) | 
						
							| 9 |  | eqid | ⊢ ( Atoms ‘ 𝐾 )  =  ( Atoms ‘ 𝐾 ) | 
						
							| 10 | 1 9 | atbase | ⊢ ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  →  𝑝  ∈  𝐵 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑝  ∈  𝐵 ) | 
						
							| 12 |  | eqid | ⊢ ( oc ‘ 𝐾 )  =  ( oc ‘ 𝐾 ) | 
						
							| 13 | 1 12 9 6 | lhpoc2N | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑝  ∈  𝐵 )  →  ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐻 ) ) | 
						
							| 14 | 8 11 13 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( 𝑝  ∈  ( Atoms ‘ 𝐾 )  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐻 ) ) | 
						
							| 15 | 7 14 | mpbid | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐻 ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐻 ) | 
						
							| 17 |  | hlop | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP ) | 
						
							| 18 | 8 17 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝐾  ∈  OP ) | 
						
							| 19 | 8 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝐾  ∈  Lat ) | 
						
							| 20 |  | simpll3 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 21 | 1 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑝  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 22 | 18 11 21 | syl2anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 23 | 1 4 | latmcl | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐵 )  →  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∈  𝐵 ) | 
						
							| 24 | 19 20 22 23 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∈  𝐵 ) | 
						
							| 25 | 1 12 5 | cvrcon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) | 
						
							| 26 | 18 24 20 25 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) | 
						
							| 27 |  | hlol | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL ) | 
						
							| 28 | 8 27 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝐾  ∈  OL ) | 
						
							| 29 |  | eqid | ⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 ) | 
						
							| 30 | 1 29 4 12 | oldmm3N | ⊢ ( ( 𝐾  ∈  OL  ∧  𝑌  ∈  𝐵  ∧  𝑝  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) | 
						
							| 31 | 28 20 11 30 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  =  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) | 
						
							| 32 | 31 | breq2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 ) ) ) | 
						
							| 33 | 26 32 | bitr2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ↔  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) | 
						
							| 34 |  | simpll2 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 35 | 1 2 12 | oplecon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∈  𝐵 )  →  ( 𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 36 | 18 34 24 35 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( 𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ↔  ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 37 | 31 | breq1d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ↔  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 38 | 36 37 | bitr2d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ↔  𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) | 
						
							| 39 | 33 38 | anbi12d | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  →  ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  ↔  ( ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌  ∧  𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) ) | 
						
							| 40 | 39 | biimpa | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  →  ( ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌  ∧  𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) | 
						
							| 41 | 40 | ancomd | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  →  ( 𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∧  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑤  =  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  →  ( 𝑌  ∧  𝑤 )  =  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) | 
						
							| 43 | 42 | breq2d | ⊢ ( 𝑤  =  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  →  ( 𝑋  ≤  ( 𝑌  ∧  𝑤 )  ↔  𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) ) ) | 
						
							| 44 | 42 | breq1d | ⊢ ( 𝑤  =  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  →  ( ( 𝑌  ∧  𝑤 ) 𝐶 𝑌  ↔  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) | 
						
							| 45 | 43 44 | anbi12d | ⊢ ( 𝑤  =  ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  →  ( ( 𝑋  ≤  ( 𝑌  ∧  𝑤 )  ∧  ( 𝑌  ∧  𝑤 ) 𝐶 𝑌 )  ↔  ( 𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∧  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) ) ) | 
						
							| 46 | 45 | rspcev | ⊢ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑝 )  ∈  𝐻  ∧  ( 𝑋  ≤  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) )  ∧  ( 𝑌  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑝 ) ) 𝐶 𝑌 ) )  →  ∃ 𝑤  ∈  𝐻 ( 𝑋  ≤  ( 𝑌  ∧  𝑤 )  ∧  ( 𝑌  ∧  𝑤 ) 𝐶 𝑌 ) ) | 
						
							| 47 | 16 41 46 | syl2anc | ⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  ∧  𝑝  ∈  ( Atoms ‘ 𝐾 ) )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) )  →  ∃ 𝑤  ∈  𝐻 ( 𝑋  ≤  ( 𝑌  ∧  𝑤 )  ∧  ( 𝑌  ∧  𝑤 ) 𝐶 𝑌 ) ) | 
						
							| 48 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝐾  ∈  HL ) | 
						
							| 49 | 48 17 | syl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝐾  ∈  OP ) | 
						
							| 50 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝑌  ∈  𝐵 ) | 
						
							| 51 | 1 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑌  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 52 | 49 50 51 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵 ) | 
						
							| 53 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝑋  ∈  𝐵 ) | 
						
							| 54 | 1 12 | opoccl | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 55 | 49 53 54 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  𝑋  <  𝑌 ) | 
						
							| 57 | 1 3 12 | opltcon3b | ⊢ ( ( 𝐾  ∈  OP  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑋  <  𝑌  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  <  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 58 | 49 53 50 57 | syl3anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( 𝑋  <  𝑌  ↔  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  <  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 59 | 56 58 | mpbid | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  <  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) | 
						
							| 60 | 1 2 3 29 5 9 | hlrelat3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  ∈  𝐵  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑋 )  ∈  𝐵 )  ∧  ( ( oc ‘ 𝐾 ) ‘ 𝑌 )  <  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) )  →  ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 61 | 48 52 55 59 60 | syl31anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑝  ∈  ( Atoms ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) 𝐶 ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ∧  ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ( join ‘ 𝐾 ) 𝑝 )  ≤  ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) ) | 
						
							| 62 | 47 61 | r19.29a | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  <  𝑌 )  →  ∃ 𝑤  ∈  𝐻 ( 𝑋  ≤  ( 𝑌  ∧  𝑤 )  ∧  ( 𝑌  ∧  𝑤 ) 𝐶 𝑌 ) ) |