Metamath Proof Explorer


Theorem limsupgle

Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)

Ref Expression
Hypothesis limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
Assertion limsupgle ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺𝐶 ) ≤ 𝐴 ↔ ∀ 𝑗𝐵 ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
2 1 limsupgval ( 𝐶 ∈ ℝ → ( 𝐺𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
3 2 3ad2ant2 ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐺𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
4 3 breq1d ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺𝐶 ) ≤ 𝐴 ↔ sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ) )
5 inss2 ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*
6 simp3 ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* )
7 supxrleub ( ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ*𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝐴 ) )
8 5 6 7 sylancr ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝐴 ) )
9 imassrn ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ran 𝐹
10 simp1r ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* )
11 10 frnd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ran 𝐹 ⊆ ℝ* )
12 9 11 sstrid ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* )
13 df-ss ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) )
14 12 13 sylib ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) )
15 imadmres ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) )
16 14 15 eqtr4di ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) )
17 16 raleqdv ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝐴 ↔ ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥𝐴 ) )
18 10 ffnd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 Fn 𝐵 )
19 10 fdmd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom 𝐹 = 𝐵 )
20 19 ineq2d ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 ) )
21 dmres dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 )
22 incom ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 )
23 20 21 22 3eqtr4g ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) )
24 inss1 ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵
25 23 24 eqsstrdi ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 )
26 breq1 ( 𝑥 = ( 𝐹𝑗 ) → ( 𝑥𝐴 ↔ ( 𝐹𝑗 ) ≤ 𝐴 ) )
27 26 ralima ( ( 𝐹 Fn 𝐵 ∧ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹𝑗 ) ≤ 𝐴 ) )
28 18 25 27 syl2anc ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹𝑗 ) ≤ 𝐴 ) )
29 23 eleq2d ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ) )
30 elin ( 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗𝐵𝑗 ∈ ( 𝐶 [,) +∞ ) ) )
31 29 30 bitrdi ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗𝐵𝑗 ∈ ( 𝐶 [,) +∞ ) ) ) )
32 simpl2 ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗𝐵 ) → 𝐶 ∈ ℝ )
33 simp1l ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐵 ⊆ ℝ )
34 33 sselda ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗𝐵 ) → 𝑗 ∈ ℝ )
35 elicopnf ( 𝐶 ∈ ℝ → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑗 ∈ ℝ ∧ 𝐶𝑗 ) ) )
36 35 baibd ( ( 𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶𝑗 ) )
37 32 34 36 syl2anc ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗𝐵 ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶𝑗 ) )
38 37 pm5.32da ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗𝐵𝑗 ∈ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗𝐵𝐶𝑗 ) ) )
39 31 38 bitrd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗𝐵𝐶𝑗 ) ) )
40 39 imbi1d ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ( ( 𝑗𝐵𝐶𝑗 ) → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
41 impexp ( ( ( 𝑗𝐵𝐶𝑗 ) → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗𝐵 → ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
42 40 41 bitrdi ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗𝐵 → ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) ) )
43 42 ralbidv2 ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹𝑗 ) ≤ 𝐴 ↔ ∀ 𝑗𝐵 ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
44 17 28 43 3bitrd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥𝐴 ↔ ∀ 𝑗𝐵 ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
45 4 8 44 3bitrd ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺𝐶 ) ≤ 𝐴 ↔ ∀ 𝑗𝐵 ( 𝐶𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )