| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltexprlem.1 |
⊢ 𝐶 = { 𝑥 ∣ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) } |
| 2 |
|
prnmax |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) |
| 3 |
|
df-rex |
⊢ ( ∃ 𝑤 ∈ 𝐵 ( 𝑦 +Q 𝑥 ) <Q 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) |
| 5 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
| 6 |
5
|
brel |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( ( 𝑦 +Q 𝑥 ) ∈ Q ∧ 𝑤 ∈ Q ) ) |
| 7 |
6
|
simpld |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( 𝑦 +Q 𝑥 ) ∈ Q ) |
| 8 |
|
addnqf |
⊢ +Q : ( Q × Q ) ⟶ Q |
| 9 |
8
|
fdmi |
⊢ dom +Q = ( Q × Q ) |
| 10 |
|
0nnq |
⊢ ¬ ∅ ∈ Q |
| 11 |
9 10
|
ndmovrcl |
⊢ ( ( 𝑦 +Q 𝑥 ) ∈ Q → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 12 |
7 11
|
syl |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ) |
| 13 |
|
ltaddnq |
⊢ ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) → 𝑦 <Q ( 𝑦 +Q 𝑥 ) ) |
| 14 |
|
ltsonq |
⊢ <Q Or Q |
| 15 |
14 5
|
sotri |
⊢ ( ( 𝑦 <Q ( 𝑦 +Q 𝑥 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → 𝑦 <Q 𝑤 ) |
| 16 |
13 15
|
sylan |
⊢ ( ( ( 𝑦 ∈ Q ∧ 𝑥 ∈ Q ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → 𝑦 <Q 𝑤 ) |
| 17 |
12 16
|
mpancom |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → 𝑦 <Q 𝑤 ) |
| 18 |
5
|
brel |
⊢ ( 𝑦 <Q 𝑤 → ( 𝑦 ∈ Q ∧ 𝑤 ∈ Q ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝑦 <Q 𝑤 → 𝑤 ∈ Q ) |
| 20 |
|
ltexnq |
⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑤 ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) ) |
| 21 |
20
|
biimpd |
⊢ ( 𝑤 ∈ Q → ( 𝑦 <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) ) |
| 22 |
19 21
|
mpcom |
⊢ ( 𝑦 <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 23 |
17 22
|
syl |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 24 |
|
eqcom |
⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) ↔ ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 25 |
24
|
exbii |
⊢ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ↔ ∃ 𝑧 ( 𝑦 +Q 𝑧 ) = 𝑤 ) |
| 26 |
23 25
|
sylibr |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ) |
| 27 |
26
|
ancri |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 → ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) |
| 28 |
27
|
anim2i |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ( 𝑤 ∈ 𝐵 ∧ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 29 |
|
an12 |
⊢ ( ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( 𝑤 ∈ 𝐵 ∧ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 30 |
28 29
|
sylibr |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 31 |
|
19.41v |
⊢ ( ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( ∃ 𝑧 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 32 |
30 31
|
sylibr |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 33 |
32
|
eximi |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑤 ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 34 |
|
excom |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ∃ 𝑤 ∃ 𝑧 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 35 |
33 34
|
sylibr |
⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) → ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ) |
| 36 |
|
ovex |
⊢ ( 𝑦 +Q 𝑧 ) ∈ V |
| 37 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( 𝑤 ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 38 |
|
breq2 |
⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( ( 𝑦 +Q 𝑥 ) <Q 𝑤 ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) |
| 39 |
37 38
|
anbi12d |
⊢ ( 𝑤 = ( 𝑦 +Q 𝑧 ) → ( ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ↔ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) ) |
| 40 |
36 39
|
ceqsexv |
⊢ ( ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) ↔ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) |
| 41 |
|
ltanq |
⊢ ( 𝑦 ∈ Q → ( 𝑥 <Q 𝑧 ↔ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) ) |
| 42 |
9 5 10 41
|
ndmovordi |
⊢ ( ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) → 𝑥 <Q 𝑧 ) |
| 43 |
42
|
anim2i |
⊢ ( ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q ( 𝑦 +Q 𝑧 ) ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 44 |
40 43
|
sylbi |
⊢ ( ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) → ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 45 |
44
|
eximi |
⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑤 = ( 𝑦 +Q 𝑧 ) ∧ ( 𝑤 ∈ 𝐵 ∧ ( 𝑦 +Q 𝑥 ) <Q 𝑤 ) ) → ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 46 |
4 35 45
|
3syl |
⊢ ( ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) |
| 47 |
46
|
anim2i |
⊢ ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝐵 ∈ P ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 48 |
47
|
an12s |
⊢ ( ( 𝐵 ∈ P ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 49 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ∃ 𝑧 ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 50 |
48 49
|
sylibr |
⊢ ( ( 𝐵 ∈ P ∧ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) → ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 51 |
50
|
ex |
⊢ ( 𝐵 ∈ P → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) ) |
| 52 |
51
|
eximdv |
⊢ ( 𝐵 ∈ P → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) → ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) ) |
| 53 |
1
|
eqabri |
⊢ ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ) |
| 54 |
|
vex |
⊢ 𝑧 ∈ V |
| 55 |
|
oveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 +Q 𝑥 ) = ( 𝑦 +Q 𝑧 ) ) |
| 56 |
55
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ↔ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 57 |
56
|
anbi2d |
⊢ ( 𝑥 = 𝑧 → ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 58 |
57
|
exbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑥 ) ∈ 𝐵 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) ) |
| 59 |
54 58 1
|
elab2 |
⊢ ( 𝑧 ∈ 𝐶 ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ) |
| 60 |
59
|
anbi1i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ) |
| 61 |
|
19.41v |
⊢ ( ∃ 𝑦 ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ) |
| 62 |
|
anass |
⊢ ( ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 63 |
62
|
exbii |
⊢ ( ∃ 𝑦 ( ( ¬ 𝑦 ∈ 𝐴 ∧ ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ) ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 64 |
60 61 63
|
3bitr2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 65 |
64
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 66 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 67 |
65 66
|
bitr4i |
⊢ ( ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ↔ ∃ 𝑦 ∃ 𝑧 ( ¬ 𝑦 ∈ 𝐴 ∧ ( ( 𝑦 +Q 𝑧 ) ∈ 𝐵 ∧ 𝑥 <Q 𝑧 ) ) ) |
| 68 |
52 53 67
|
3imtr4g |
⊢ ( 𝐵 ∈ P → ( 𝑥 ∈ 𝐶 → ∃ 𝑧 ( 𝑧 ∈ 𝐶 ∧ 𝑥 <Q 𝑧 ) ) ) |