Step |
Hyp |
Ref |
Expression |
1 |
|
odmulgid.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odmulgid.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odmulgid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
eqcom |
⊢ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) |
5 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) |
6 |
1 2
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
8 |
7
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℂ ) |
9 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Grp ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) |
11 |
1 3
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
12 |
9 10 5 11
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 · 𝐴 ) ∈ 𝑋 ) |
13 |
1 2
|
odcl |
⊢ ( ( 𝑁 · 𝐴 ) ∈ 𝑋 → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℕ0 ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℕ0 ) |
15 |
14
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∈ ℂ ) |
16 |
|
nnne0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
18 |
1 2 3
|
odmulg2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ) |
20 |
|
breq1 |
⊢ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ∥ ( 𝑂 ‘ 𝐴 ) ↔ 0 ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
21 |
19 20
|
syl5ibcom |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → 0 ∥ ( 𝑂 ‘ 𝐴 ) ) ) |
22 |
7
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℤ ) |
23 |
|
0dvds |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℤ → ( 0 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
24 |
22 23
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 0 ∥ ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
25 |
21 24
|
sylibd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = 0 → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
26 |
25
|
necon3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ≠ 0 → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ≠ 0 ) ) |
27 |
17 26
|
mpd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ≠ 0 ) |
28 |
8 15 27
|
diveq1ad |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = 1 ↔ ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
29 |
10 22
|
gcdcld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
30 |
29
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ∈ ℂ ) |
31 |
15 30
|
mulcomd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
32 |
1 2 3
|
odmulg |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) = ( ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) · ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) ) |
34 |
31 33
|
eqtr4d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
35 |
8 15 30 27
|
divmuld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) · ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) ) |
36 |
34 35
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) ) |
37 |
36
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑂 ‘ 𝐴 ) / ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ) = 1 ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
38 |
28 37
|
bitr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) = ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |
39 |
4 38
|
syl5bb |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ ( 𝑁 · 𝐴 ) ) = ( 𝑂 ‘ 𝐴 ) ↔ ( 𝑁 gcd ( 𝑂 ‘ 𝐴 ) ) = 1 ) ) |