| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							php5 | 
							⊢ ( 𝐵  ∈  ω  →  ¬  𝐵  ≈  suc  𝐵 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ¬  𝐵  ≈  suc  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							enen1 | 
							⊢ ( 𝐴  ≈  𝐵  →  ( 𝐴  ≈  suc  𝐵  ↔  𝐵  ≈  suc  𝐵 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( 𝐴  ≈  suc  𝐵  ↔  𝐵  ≈  suc  𝐵 ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							mtbird | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ¬  𝐴  ≈  suc  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							peano2 | 
							⊢ ( 𝐵  ∈  ω  →  suc  𝐵  ∈  ω )  | 
						
						
							| 7 | 
							
								
							 | 
							sssucid | 
							⊢ 𝐵  ⊆  suc  𝐵  | 
						
						
							| 8 | 
							
								
							 | 
							ssdomg | 
							⊢ ( suc  𝐵  ∈  ω  →  ( 𝐵  ⊆  suc  𝐵  →  𝐵  ≼  suc  𝐵 ) )  | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							mpisyl | 
							⊢ ( 𝐵  ∈  ω  →  𝐵  ≼  suc  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							endomtr | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ≼  suc  𝐵 )  →  𝐴  ≼  suc  𝐵 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ≈  𝐵  ∧  𝐵  ∈  ω )  →  𝐴  ≼  suc  𝐵 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ancoms | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ≈  𝐵 )  →  𝐴  ≼  suc  𝐵 )  | 
						
						
							| 13 | 
							
								12
							 | 
							a1d | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ≈  𝐵 )  →  ( ω  ⊆  𝐴  →  𝐴  ≼  suc  𝐵 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantll | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( ω  ⊆  𝐴  →  𝐴  ≼  suc  𝐵 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ssel | 
							⊢ ( ω  ⊆  𝐴  →  ( 𝐵  ∈  ω  →  𝐵  ∈  𝐴 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							com12 | 
							⊢ ( 𝐵  ∈  ω  →  ( ω  ⊆  𝐴  →  𝐵  ∈  𝐴 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  On )  →  ( ω  ⊆  𝐴  →  𝐵  ∈  𝐴 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eloni | 
							⊢ ( 𝐴  ∈  On  →  Ord  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							ordelsuc | 
							⊢ ( ( 𝐵  ∈  ω  ∧  Ord  𝐴 )  →  ( 𝐵  ∈  𝐴  ↔  suc  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							sylan2 | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  On )  →  ( 𝐵  ∈  𝐴  ↔  suc  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 21 | 
							
								17 20
							 | 
							sylibd | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  On )  →  ( ω  ⊆  𝐴  →  suc  𝐵  ⊆  𝐴 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ssdomg | 
							⊢ ( 𝐴  ∈  On  →  ( suc  𝐵  ⊆  𝐴  →  suc  𝐵  ≼  𝐴 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  On )  →  ( suc  𝐵  ⊆  𝐴  →  suc  𝐵  ≼  𝐴 ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							syld | 
							⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  On )  →  ( ω  ⊆  𝐴  →  suc  𝐵  ≼  𝐴 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ancoms | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  →  ( ω  ⊆  𝐴  →  suc  𝐵  ≼  𝐴 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( ω  ⊆  𝐴  →  suc  𝐵  ≼  𝐴 ) )  | 
						
						
							| 27 | 
							
								14 26
							 | 
							jcad | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( ω  ⊆  𝐴  →  ( 𝐴  ≼  suc  𝐵  ∧  suc  𝐵  ≼  𝐴 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							sbth | 
							⊢ ( ( 𝐴  ≼  suc  𝐵  ∧  suc  𝐵  ≼  𝐴 )  →  𝐴  ≈  suc  𝐵 )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl6 | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( ω  ⊆  𝐴  →  𝐴  ≈  suc  𝐵 ) )  | 
						
						
							| 30 | 
							
								5 29
							 | 
							mtod | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ¬  ω  ⊆  𝐴 )  | 
						
						
							| 31 | 
							
								
							 | 
							ordom | 
							⊢ Ord  ω  | 
						
						
							| 32 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  ω  ∧  Ord  𝐴 )  →  ( ω  ⊆  𝐴  ↔  ¬  𝐴  ∈  ω ) )  | 
						
						
							| 33 | 
							
								31 18 32
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  On  →  ( ω  ⊆  𝐴  ↔  ¬  𝐴  ∈  ω ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							con2bid | 
							⊢ ( 𝐴  ∈  On  →  ( 𝐴  ∈  ω  ↔  ¬  ω  ⊆  𝐴 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( 𝐴  ∈  ω  ↔  ¬  ω  ⊆  𝐴 ) )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							mpbird | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  𝐴  ∈  ω )  | 
						
						
							| 37 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  𝐵  ∈  ω )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							jca | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω ) )  | 
						
						
							| 39 | 
							
								
							 | 
							nneneq | 
							⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ≈  𝐵  ↔  𝐴  =  𝐵 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							biimpa | 
							⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  𝐴  =  𝐵 )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							sylancom | 
							⊢ ( ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  ∧  𝐴  ≈  𝐵 )  →  𝐴  =  𝐵 )  | 
						
						
							| 42 | 
							
								41
							 | 
							ex | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  →  ( 𝐴  ≈  𝐵  →  𝐴  =  𝐵 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							eqeng | 
							⊢ ( 𝐴  ∈  On  →  ( 𝐴  =  𝐵  →  𝐴  ≈  𝐵 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  →  ( 𝐴  =  𝐵  →  𝐴  ≈  𝐵 ) )  | 
						
						
							| 45 | 
							
								42 44
							 | 
							impbid | 
							⊢ ( ( 𝐴  ∈  On  ∧  𝐵  ∈  ω )  →  ( 𝐴  ≈  𝐵  ↔  𝐴  =  𝐵 ) )  |