Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
4 |
|
ovolicc2.4 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
5 |
|
ovolicc2.5 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
6 |
|
ovolicc2.6 |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) |
7 |
|
ovolicc2.7 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
8 |
|
ovolicc2.8 |
⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) |
9 |
|
ovolicc2.9 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
10 |
|
ovolicc2.10 |
⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } |
11 |
|
ovolicc2.11 |
⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) |
12 |
|
ovolicc2.12 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
13 |
|
ovolicc2.13 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
14 |
|
ovolicc2.14 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
15 |
|
ovolicc2.15 |
⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) |
16 |
|
ovolicc2.16 |
⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
18 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
19 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
20 |
5 18 19
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝐺 : 𝑈 ⟶ ℕ ) |
23 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
24 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
25 |
23 15 24 14 11
|
algrf |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑇 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑇 ) |
27 |
|
ineq1 |
⊢ ( 𝑢 = ( 𝐾 ‘ 𝑁 ) → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
28 |
27
|
neeq1d |
⊢ ( 𝑢 = ( 𝐾 ‘ 𝑁 ) → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
29 |
28 10
|
elrab2 |
⊢ ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑇 ↔ ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
30 |
26 29
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
31 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) |
32 |
22 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ∈ ℕ ) |
33 |
21 32
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) ) |
34 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
36 |
17 35
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ↔ ¬ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) ) |
37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝑁 ∈ ℕ ) |
38 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 ∈ ℝ ) |
39 |
30
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) ) |
40 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) |
41 |
|
n0 |
⊢ ( ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
42 |
40 41
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ∃ 𝑥 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
43 |
|
xp1st |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
44 |
33 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
45 |
44
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
46 |
45
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ∈ ℝ ) |
47 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) |
48 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ↔ ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
50 |
49
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
51 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
52 |
1 2 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
54 |
50 53
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
55 |
54
|
simp1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ℝ ) |
56 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝐵 ∈ ℝ ) |
57 |
49
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ) |
58 |
39
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) |
59 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
60 |
58 59
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
62 |
57 61
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝑥 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ∧ 𝑥 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) |
63 |
62
|
simp2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝑥 ) |
64 |
54
|
simp3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → 𝑥 ≤ 𝐵 ) |
65 |
46 55 56 63 64
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ∧ 𝑥 ∈ ( ( 𝐾 ‘ 𝑁 ) ∩ ( 𝐴 [,] 𝐵 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ) |
66 |
42 65
|
exlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ) |
67 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) |
68 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑁 ) ∈ 𝑈 ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
69 |
58 68
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) ) |
70 |
38 66 67 69
|
mpbir3and |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) |
71 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑁 ) ) |
72 |
71
|
eleq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) ) |
73 |
72 16
|
elrab2 |
⊢ ( 𝑁 ∈ 𝑊 ↔ ( 𝑁 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑁 ) ) ) |
74 |
37 70 73
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ) ) → 𝑁 ∈ 𝑊 ) |
75 |
74
|
expr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) → 𝑁 ∈ 𝑊 ) ) |
76 |
36 75
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ¬ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 → 𝑁 ∈ 𝑊 ) ) |
77 |
76
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑁 ∈ 𝑊 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) ) |
78 |
77
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 ∈ 𝑊 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑁 ) ) ) ) ≤ 𝐵 ) |