| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
ovolicc2.m |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
| 5 |
4
|
elovolm |
⊢ ( 𝑧 ∈ 𝑀 ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 6 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) |
| 7 |
|
unieq |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ∪ 𝑢 = ∪ ran ( (,) ∘ 𝑓 ) ) |
| 8 |
7
|
sseq2d |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 ↔ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) |
| 9 |
|
pweq |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → 𝒫 𝑢 = 𝒫 ran ( (,) ∘ 𝑓 ) ) |
| 10 |
9
|
ineq1d |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( 𝒫 𝑢 ∩ Fin ) = ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) |
| 11 |
10
|
rexeqdv |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 12 |
8 11
|
imbi12d |
⊢ ( 𝑢 = ran ( (,) ∘ 𝑓 ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ↔ ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 13 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 14 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) |
| 15 |
13 14
|
icccmp |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 16 |
1 2 15
|
syl2anc |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ) |
| 17 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 18 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 19 |
1 2 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 20 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
| 21 |
20
|
cmpsub |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 22 |
17 19 21
|
sylancr |
⊢ ( 𝜑 → ( ( ( topGen ‘ ran (,) ) ↾t ( 𝐴 [,] 𝐵 ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) ) |
| 23 |
16 22
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ ran (,) ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 25 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 26 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 27 |
25 26
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 28 |
|
dffn3 |
⊢ ( (,) Fn ( ℝ* × ℝ* ) ↔ (,) : ( ℝ* × ℝ* ) ⟶ ran (,) ) |
| 29 |
27 28
|
mpbi |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ ran (,) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 31 |
|
elovolmlem |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 32 |
30 31
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 33 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 34 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 35 |
33 34
|
sstri |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 36 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 37 |
32 35 36
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 38 |
|
fco |
⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ ran (,) ∧ 𝑓 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) |
| 39 |
29 37 38
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) |
| 40 |
39
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( (,) ∘ 𝑓 ) : ℕ ⟶ ran (,) ) |
| 41 |
40
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ran (,) ) |
| 42 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 43 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 44 |
42 43
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 45 |
41 44
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 46 |
|
fvex |
⊢ ( topGen ‘ ran (,) ) ∈ V |
| 47 |
46
|
elpw2 |
⊢ ( ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) ↔ ran ( (,) ∘ 𝑓 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 48 |
45 47
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ran ( (,) ∘ 𝑓 ) ∈ 𝒫 ( topGen ‘ ran (,) ) ) |
| 49 |
12 24 48
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) |
| 50 |
6 49
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) |
| 51 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) |
| 52 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ↔ ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) ) |
| 53 |
51 52
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ∧ 𝑣 ∈ Fin ) ) |
| 54 |
53
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ Fin ) |
| 55 |
53
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ∈ 𝒫 ran ( (,) ∘ 𝑓 ) ) |
| 56 |
55
|
elpwid |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → 𝑣 ⊆ ran ( (,) ∘ 𝑓 ) ) |
| 57 |
56
|
sseld |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ 𝑣 → 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ) ) |
| 58 |
39
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
| 59 |
58
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( (,) ∘ 𝑓 ) Fn ℕ ) |
| 60 |
|
fvelrnb |
⊢ ( ( (,) ∘ 𝑓 ) Fn ℕ → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ ran ( (,) ∘ 𝑓 ) ↔ ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) |
| 62 |
57 61
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝑡 ∈ 𝑣 → ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) ) |
| 63 |
62
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ∀ 𝑡 ∈ 𝑣 ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) |
| 64 |
|
fveqeq2 |
⊢ ( 𝑘 = ( 𝑔 ‘ 𝑡 ) → ( ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) |
| 65 |
64
|
ac6sfi |
⊢ ( ( 𝑣 ∈ Fin ∧ ∀ 𝑡 ∈ 𝑣 ∃ 𝑘 ∈ ℕ ( ( (,) ∘ 𝑓 ) ‘ 𝑘 ) = 𝑡 ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) |
| 66 |
54 63 65
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) |
| 67 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐴 ∈ ℝ ) |
| 68 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐵 ∈ ℝ ) |
| 69 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝐴 ≤ 𝐵 ) |
| 70 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
| 71 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑓 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 72 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ) |
| 73 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) |
| 74 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → 𝑔 : 𝑣 ⟶ ℕ ) |
| 75 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) |
| 76 |
|
2fveq3 |
⊢ ( 𝑡 = 𝑥 → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 77 |
|
id |
⊢ ( 𝑡 = 𝑥 → 𝑡 = 𝑥 ) |
| 78 |
76 77
|
eqeq12d |
⊢ ( 𝑡 = 𝑥 → ( ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ↔ ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) ) |
| 79 |
78
|
rspccva |
⊢ ( ( ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ∧ 𝑥 ∈ 𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) |
| 80 |
75 79
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) ∧ 𝑥 ∈ 𝑣 ) → ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑥 ) ) = 𝑥 ) |
| 81 |
|
eqid |
⊢ { 𝑢 ∈ 𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } = { 𝑢 ∈ 𝑣 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } |
| 82 |
67 68 69 70 71 72 73 74 80 81
|
ovolicc2lem5 |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ∧ ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 83 |
82
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 84 |
83
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( ∃ 𝑔 ( 𝑔 : 𝑣 ⟶ ℕ ∧ ∀ 𝑡 ∈ 𝑣 ( ( (,) ∘ 𝑓 ) ‘ ( 𝑔 ‘ 𝑡 ) ) = 𝑡 ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 85 |
66 84
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) ∧ ( 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 86 |
85
|
rexlimdvaa |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 87 |
86
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( ∃ 𝑣 ∈ ( 𝒫 ran ( (,) ∘ 𝑓 ) ∩ Fin ) ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑣 → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 88 |
50 87
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
| 89 |
|
breq2 |
⊢ ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( ( 𝐵 − 𝐴 ) ≤ 𝑧 ↔ ( 𝐵 − 𝐴 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) |
| 90 |
88 89
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ) ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 91 |
90
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) ) |
| 92 |
91
|
impd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 93 |
92
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 94 |
5 93
|
biimtrid |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑀 → ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 95 |
94
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) |
| 96 |
4
|
ssrab3 |
⊢ 𝑀 ⊆ ℝ* |
| 97 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 98 |
97
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 99 |
|
infxrgelb |
⊢ ( ( 𝑀 ⊆ ℝ* ∧ ( 𝐵 − 𝐴 ) ∈ ℝ* ) → ( ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 100 |
96 98 99
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ↔ ∀ 𝑧 ∈ 𝑀 ( 𝐵 − 𝐴 ) ≤ 𝑧 ) ) |
| 101 |
95 100
|
mpbird |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ inf ( 𝑀 , ℝ* , < ) ) |
| 102 |
4
|
ovolval |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 103 |
19 102
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = inf ( 𝑀 , ℝ* , < ) ) |
| 104 |
101 103
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |