Metamath Proof Explorer


Theorem ovolicc2lem5

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 ( 𝜑𝐴 ∈ ℝ )
ovolicc.2 ( 𝜑𝐵 ∈ ℝ )
ovolicc.3 ( 𝜑𝐴𝐵 )
ovolicc2.4 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
ovolicc2.5 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
ovolicc2.6 ( 𝜑𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) )
ovolicc2.7 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝑈 )
ovolicc2.8 ( 𝜑𝐺 : 𝑈 ⟶ ℕ )
ovolicc2.9 ( ( 𝜑𝑡𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = 𝑡 )
ovolicc2.10 𝑇 = { 𝑢𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ }
Assertion ovolicc2lem5 ( 𝜑 → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 ovolicc.1 ( 𝜑𝐴 ∈ ℝ )
2 ovolicc.2 ( 𝜑𝐵 ∈ ℝ )
3 ovolicc.3 ( 𝜑𝐴𝐵 )
4 ovolicc2.4 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) )
5 ovolicc2.5 ( 𝜑𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
6 ovolicc2.6 ( 𝜑𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) )
7 ovolicc2.7 ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ 𝑈 )
8 ovolicc2.8 ( 𝜑𝐺 : 𝑈 ⟶ ℕ )
9 ovolicc2.9 ( ( 𝜑𝑡𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = 𝑡 )
10 ovolicc2.10 𝑇 = { 𝑢𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ }
11 1 rexrd ( 𝜑𝐴 ∈ ℝ* )
12 2 rexrd ( 𝜑𝐵 ∈ ℝ* )
13 lbicc2 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
14 11 12 3 13 syl3anc ( 𝜑𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
15 7 14 sseldd ( 𝜑𝐴 𝑈 )
16 eluni2 ( 𝐴 𝑈 ↔ ∃ 𝑧𝑈 𝐴𝑧 )
17 15 16 sylib ( 𝜑 → ∃ 𝑧𝑈 𝐴𝑧 )
18 6 elin2d ( 𝜑𝑈 ∈ Fin )
19 10 ssrab3 𝑇𝑈
20 ssfi ( ( 𝑈 ∈ Fin ∧ 𝑇𝑈 ) → 𝑇 ∈ Fin )
21 18 19 20 sylancl ( 𝜑𝑇 ∈ Fin )
22 7 adantr ( ( 𝜑𝑡𝑇 ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝑈 )
23 ineq1 ( 𝑢 = 𝑡 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) )
24 23 neeq1d ( 𝑢 = 𝑡 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
25 24 10 elrab2 ( 𝑡𝑇 ↔ ( 𝑡𝑈 ∧ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
26 25 simplbi ( 𝑡𝑇𝑡𝑈 )
27 ffvelrn ( ( 𝐺 : 𝑈 ⟶ ℕ ∧ 𝑡𝑈 ) → ( 𝐺𝑡 ) ∈ ℕ )
28 8 26 27 syl2an ( ( 𝜑𝑡𝑇 ) → ( 𝐺𝑡 ) ∈ ℕ )
29 5 ffvelrnda ( ( 𝜑 ∧ ( 𝐺𝑡 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
30 28 29 syldan ( ( 𝜑𝑡𝑇 ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) )
31 30 elin2d ( ( 𝜑𝑡𝑇 ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ℝ × ℝ ) )
32 xp2nd ( ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ )
33 31 32 syl ( ( 𝜑𝑡𝑇 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ )
34 2 adantr ( ( 𝜑𝑡𝑇 ) → 𝐵 ∈ ℝ )
35 33 34 ifcld ( ( 𝜑𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ℝ )
36 25 simprbi ( 𝑡𝑇 → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
37 36 adantl ( ( 𝜑𝑡𝑇 ) → ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
38 n0 ( ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) )
39 37 38 sylib ( ( 𝜑𝑡𝑇 ) → ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) )
40 1 adantr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ∈ ℝ )
41 simprr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) )
42 41 elin2d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( 𝐴 [,] 𝐵 ) )
43 2 adantr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐵 ∈ ℝ )
44 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
45 1 43 44 syl2an2r ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) ) )
46 42 45 mpbid ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵 ) )
47 46 simp1d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ℝ )
48 31 adantrr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ℝ × ℝ ) )
49 48 32 syl ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ )
50 46 simp2d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴𝑦 )
51 41 elin1d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦𝑡 )
52 28 adantrr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐺𝑡 ) ∈ ℕ )
53 fvco3 ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐺𝑡 ) ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
54 5 52 53 syl2an2r ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = ( (,) ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
55 26 9 sylan2 ( ( 𝜑𝑡𝑇 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = 𝑡 )
56 55 adantrr ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = 𝑡 )
57 1st2nd2 ( ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) = ⟨ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ⟩ )
58 48 57 syl ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑡 ) ) = ⟨ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ⟩ )
59 58 fveq2d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ⟩ ) )
60 df-ov ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) = ( (,) ‘ ⟨ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ⟩ )
61 59 60 eqtr4di ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( (,) ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
62 54 56 61 3eqtr3d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑡 = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
63 51 62 eleqtrd ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
64 xp1st ( ( 𝐹 ‘ ( 𝐺𝑡 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ )
65 48 64 syl ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ )
66 rexr ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ → ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ* )
67 rexr ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ* )
68 elioo2 ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ* ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ) )
69 66 67 68 syl2an ( ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ) )
70 65 49 69 syl2anc ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) (,) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ↔ ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) ) )
71 63 70 mpbid ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → ( 𝑦 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) < 𝑦𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
72 71 simp3d ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
73 47 49 72 ltled ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝑦 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
74 40 47 49 50 73 letrd ( ( 𝜑 ∧ ( 𝑡𝑇𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
75 74 expr ( ( 𝜑𝑡𝑇 ) → ( 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
76 75 exlimdv ( ( 𝜑𝑡𝑇 ) → ( ∃ 𝑦 𝑦 ∈ ( 𝑡 ∩ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ) )
77 39 76 mpd ( ( 𝜑𝑡𝑇 ) → 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
78 3 adantr ( ( 𝜑𝑡𝑇 ) → 𝐴𝐵 )
79 breq2 ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) → ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ↔ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ) )
80 breq2 ( 𝐵 = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) → ( 𝐴𝐵𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ) )
81 79 80 ifboth ( ( 𝐴 ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∧ 𝐴𝐵 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) )
82 77 78 81 syl2anc ( ( 𝜑𝑡𝑇 ) → 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) )
83 min2 ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 )
84 33 34 83 syl2anc ( ( 𝜑𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 )
85 elicc2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) )
86 1 2 85 syl2anc ( 𝜑 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) )
87 86 adantr ( ( 𝜑𝑡𝑇 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ↔ ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ℝ ∧ 𝐴 ≤ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ≤ 𝐵 ) ) )
88 35 82 84 87 mpbir3and ( ( 𝜑𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) )
89 22 88 sseldd ( ( 𝜑𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑈 )
90 eluni2 ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑈 ↔ ∃ 𝑥𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 )
91 89 90 sylib ( ( 𝜑𝑡𝑇 ) → ∃ 𝑥𝑈 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 )
92 simprl ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑥𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥𝑈 )
93 simprr ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑥𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 )
94 88 adantr ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑥𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) )
95 inelcm ( ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
96 93 94 95 syl2anc ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑥𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
97 ineq1 ( 𝑢 = 𝑥 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) )
98 97 neeq1d ( 𝑢 = 𝑥 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
99 98 10 elrab2 ( 𝑥𝑇 ↔ ( 𝑥𝑈 ∧ ( 𝑥 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
100 92 96 99 sylanbrc ( ( ( 𝜑𝑡𝑇 ) ∧ ( 𝑥𝑈 ∧ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) ) → 𝑥𝑇 )
101 91 100 93 reximssdv ( ( 𝜑𝑡𝑇 ) → ∃ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 )
102 101 ralrimiva ( 𝜑 → ∀ 𝑡𝑇𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 )
103 eleq2 ( 𝑥 = ( 𝑡 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) )
104 103 ac6sfi ( ( 𝑇 ∈ Fin ∧ ∀ 𝑡𝑇𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ 𝑥 ) → ∃ ( : 𝑇𝑇 ∧ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) )
105 21 102 104 syl2anc ( 𝜑 → ∃ ( : 𝑇𝑇 ∧ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) )
106 105 adantr ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) → ∃ ( : 𝑇𝑇 ∧ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) )
107 2fveq3 ( 𝑥 = 𝑡 → ( 𝐹 ‘ ( 𝐺𝑥 ) ) = ( 𝐹 ‘ ( 𝐺𝑡 ) ) )
108 107 fveq2d ( 𝑥 = 𝑡 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) )
109 108 breq1d ( 𝑥 = 𝑡 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 ) )
110 109 108 ifbieq1d ( 𝑥 = 𝑡 → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) )
111 fveq2 ( 𝑥 = 𝑡 → ( 𝑥 ) = ( 𝑡 ) )
112 110 111 eleq12d ( 𝑥 = 𝑡 → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) )
113 112 cbvralvw ( ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ↔ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) )
114 1 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐴 ∈ ℝ )
115 2 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐵 ∈ ℝ )
116 3 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐴𝐵 )
117 5 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) )
118 6 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) )
119 7 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → ( 𝐴 [,] 𝐵 ) ⊆ 𝑈 )
120 8 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐺 : 𝑈 ⟶ ℕ )
121 9 adantlr ( ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) ∧ 𝑡𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺𝑡 ) ) = 𝑡 )
122 simprrl ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → : 𝑇𝑇 )
123 simprrr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) )
124 112 rspccva ( ( ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ∧ 𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) )
125 123 124 sylan ( ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) ∧ 𝑡𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) )
126 simprlr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐴𝑧 )
127 simprll ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝑧𝑈 )
128 14 adantr ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) )
129 inelcm ( ( 𝐴𝑧𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
130 126 128 129 syl2anc ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ )
131 ineq1 ( 𝑢 = 𝑧 → ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) = ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) )
132 131 neeq1d ( 𝑢 = 𝑧 → ( ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ↔ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
133 132 10 elrab2 ( 𝑧𝑇 ↔ ( 𝑧𝑈 ∧ ( 𝑧 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ ) )
134 127 130 133 sylanbrc ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → 𝑧𝑇 )
135 eqid seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) = seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) )
136 fveq2 ( 𝑚 = 𝑛 → ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) = ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) )
137 136 eleq2d ( 𝑚 = 𝑛 → ( 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) ↔ 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) ) )
138 137 cbvrabv { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑛 ) }
139 eqid inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < ) = inf ( { 𝑚 ∈ ℕ ∣ 𝐵 ∈ ( seq 1 ( ( ∘ 1st ) , ( ℕ × { 𝑧 } ) ) ‘ 𝑚 ) } , ℝ , < )
140 114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139 ovolicc2lem4 ( ( 𝜑 ∧ ( ( 𝑧𝑈𝐴𝑧 ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
141 140 anassrs ( ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) ∧ ( : 𝑇𝑇 ∧ ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) ) ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
142 141 expr ( ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) ∧ : 𝑇𝑇 ) → ( ∀ 𝑥𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑥 ) ) ) , 𝐵 ) ∈ ( 𝑥 ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) )
143 113 142 syl5bir ( ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) ∧ : 𝑇𝑇 ) → ( ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) )
144 143 expimpd ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) → ( ( : 𝑇𝑇 ∧ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) )
145 144 exlimdv ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) → ( ∃ ( : 𝑇𝑇 ∧ ∀ 𝑡𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺𝑡 ) ) ) , 𝐵 ) ∈ ( 𝑡 ) ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) )
146 106 145 mpd ( ( 𝜑 ∧ ( 𝑧𝑈𝐴𝑧 ) ) → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )
147 17 146 rexlimddv ( 𝜑 → ( 𝐵𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) )