| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
ovolicc.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
ovolicc.3 |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 4 |
|
ovolicc2.4 |
⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) |
| 5 |
|
ovolicc2.5 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 6 |
|
ovolicc2.6 |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝒫 ran ( (,) ∘ 𝐹 ) ∩ Fin ) ) |
| 7 |
|
ovolicc2.7 |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ∪ 𝑈 ) |
| 8 |
|
ovolicc2.8 |
⊢ ( 𝜑 → 𝐺 : 𝑈 ⟶ ℕ ) |
| 9 |
|
ovolicc2.9 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑈 ) → ( ( (,) ∘ 𝐹 ) ‘ ( 𝐺 ‘ 𝑡 ) ) = 𝑡 ) |
| 10 |
|
ovolicc2.10 |
⊢ 𝑇 = { 𝑢 ∈ 𝑈 ∣ ( 𝑢 ∩ ( 𝐴 [,] 𝐵 ) ) ≠ ∅ } |
| 11 |
|
ovolicc2.11 |
⊢ ( 𝜑 → 𝐻 : 𝑇 ⟶ 𝑇 ) |
| 12 |
|
ovolicc2.12 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ 𝑇 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
| 13 |
|
ovolicc2.13 |
⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) |
| 14 |
|
ovolicc2.14 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑇 ) |
| 15 |
|
ovolicc2.15 |
⊢ 𝐾 = seq 1 ( ( 𝐻 ∘ 1st ) , ( ℕ × { 𝐶 } ) ) |
| 16 |
|
ovolicc2.16 |
⊢ 𝑊 = { 𝑛 ∈ ℕ ∣ 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) } |
| 17 |
|
ovolicc2.17 |
⊢ 𝑀 = inf ( 𝑊 , ℝ , < ) |
| 18 |
|
arch |
⊢ ( 𝑥 ∈ ℝ → ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 ) |
| 20 |
|
df-ima |
⊢ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) = ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) |
| 21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 22 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 23 |
21 15 22 14 11
|
algrf |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑇 ) |
| 24 |
10
|
ssrab3 |
⊢ 𝑇 ⊆ 𝑈 |
| 25 |
|
fss |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑇 ⊆ 𝑈 ) → 𝐾 : ℕ ⟶ 𝑈 ) |
| 26 |
23 24 25
|
sylancl |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ 𝑈 ) |
| 27 |
|
fco |
⊢ ( ( 𝐺 : 𝑈 ⟶ ℕ ∧ 𝐾 : ℕ ⟶ 𝑈 ) → ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ) |
| 28 |
8 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ) |
| 29 |
|
fz1ssnn |
⊢ ( 1 ... 𝑀 ) ⊆ ℕ |
| 30 |
|
fssres |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) : ℕ ⟶ ℕ ∧ ( 1 ... 𝑀 ) ⊆ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 31 |
28 29 30
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ) |
| 32 |
31
|
frnd |
⊢ ( 𝜑 → ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 33 |
20 32
|
eqsstrid |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 34 |
|
nnssre |
⊢ ℕ ⊆ ℝ |
| 35 |
33 34
|
sstrdi |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ) |
| 36 |
35
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ) |
| 37 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 38 |
36 37
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℝ ) |
| 39 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑥 ∈ ℝ ) |
| 40 |
|
nnre |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℝ ) |
| 41 |
40
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℝ ) |
| 42 |
|
lelttr |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧 ) → 𝑦 < 𝑧 ) ) |
| 43 |
38 39 41 42
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝑦 ≤ 𝑥 ∧ 𝑥 < 𝑧 ) → 𝑦 < 𝑧 ) ) |
| 44 |
43
|
ancomsd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝑥 < 𝑧 ∧ 𝑦 ≤ 𝑥 ) → 𝑦 < 𝑧 ) ) |
| 45 |
44
|
expdimp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) ∧ 𝑥 < 𝑧 ) → ( 𝑦 ≤ 𝑥 → 𝑦 < 𝑧 ) ) |
| 46 |
45
|
an32s |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑥 < 𝑧 ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 ≤ 𝑥 → 𝑦 < 𝑧 ) ) |
| 47 |
46
|
ralimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ 𝑥 < 𝑧 ) → ( ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 48 |
47
|
impancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑧 ∈ ℕ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ( 𝑥 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 49 |
48
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑧 ∈ ℕ ) → ( 𝑥 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 50 |
49
|
reximdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ( ∃ 𝑧 ∈ ℕ 𝑥 < 𝑧 → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) |
| 51 |
19 50
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) |
| 52 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 53 |
|
fvres |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) ) |
| 55 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑀 ) → 𝑖 ∈ ℕ ) |
| 56 |
|
fvco3 |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑖 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 57 |
23 55 56
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 58 |
54 57
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 59 |
58
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 60 |
|
fvres |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) ) |
| 61 |
60
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) ) |
| 62 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑀 ) → 𝑗 ∈ ℕ ) |
| 63 |
62
|
adantl |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) → 𝑗 ∈ ℕ ) |
| 64 |
|
fvco3 |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑗 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) |
| 65 |
23 63 64
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) |
| 66 |
61 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) |
| 67 |
59 66
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) ↔ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) |
| 68 |
|
2fveq3 |
⊢ ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) |
| 69 |
29
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ ℕ ) |
| 70 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ∈ ℕ ) |
| 71 |
70
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ∈ ℕ ) |
| 72 |
71
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ∈ ℝ ) |
| 73 |
16
|
ssrab3 |
⊢ 𝑊 ⊆ ℕ |
| 74 |
73 34
|
sstri |
⊢ 𝑊 ⊆ ℝ |
| 75 |
73 21
|
sseqtri |
⊢ 𝑊 ⊆ ( ℤ≥ ‘ 1 ) |
| 76 |
|
nnnfi |
⊢ ¬ ℕ ∈ Fin |
| 77 |
6
|
elin2d |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
| 78 |
|
ssfi |
⊢ ( ( 𝑈 ∈ Fin ∧ 𝑇 ⊆ 𝑈 ) → 𝑇 ∈ Fin ) |
| 79 |
77 24 78
|
sylancl |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝑇 ∈ Fin ) |
| 81 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐾 : ℕ ⟶ 𝑇 ) |
| 82 |
|
2fveq3 |
⊢ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) |
| 83 |
82
|
fveq2d |
⊢ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) |
| 84 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝜑 ) |
| 85 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ ℕ ) |
| 86 |
|
ral0 |
⊢ ∀ 𝑚 ∈ ∅ 𝑛 ≤ 𝑚 |
| 87 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑊 = ∅ ) |
| 88 |
87
|
raleqdv |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ↔ ∀ 𝑚 ∈ ∅ 𝑛 ≤ 𝑚 ) ) |
| 89 |
86 88
|
mpbiri |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 90 |
89
|
ralrimivw |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 91 |
|
rabid2 |
⊢ ( ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ↔ ∀ 𝑛 ∈ ℕ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 92 |
90 91
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ℕ = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 93 |
85 92
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 94 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ ℕ ) |
| 95 |
94 92
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem3 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ∧ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 97 |
84 93 95 96
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 98 |
83 97
|
imbitrrid |
⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑖 ∈ ℕ ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 99 |
98
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℕ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 100 |
|
dff13 |
⊢ ( 𝐾 : ℕ –1-1→ 𝑇 ↔ ( 𝐾 : ℕ ⟶ 𝑇 ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℕ ( ( 𝐾 ‘ 𝑖 ) = ( 𝐾 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 101 |
81 99 100
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐾 : ℕ –1-1→ 𝑇 ) |
| 102 |
|
f1domg |
⊢ ( 𝑇 ∈ Fin → ( 𝐾 : ℕ –1-1→ 𝑇 → ℕ ≼ 𝑇 ) ) |
| 103 |
80 101 102
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ℕ ≼ 𝑇 ) |
| 104 |
|
domfi |
⊢ ( ( 𝑇 ∈ Fin ∧ ℕ ≼ 𝑇 ) → ℕ ∈ Fin ) |
| 105 |
79 103 104
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ℕ ∈ Fin ) |
| 106 |
105
|
ex |
⊢ ( 𝜑 → ( 𝑊 = ∅ → ℕ ∈ Fin ) ) |
| 107 |
106
|
necon3bd |
⊢ ( 𝜑 → ( ¬ ℕ ∈ Fin → 𝑊 ≠ ∅ ) ) |
| 108 |
76 107
|
mpi |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 109 |
|
infssuzcl |
⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑊 ≠ ∅ ) → inf ( 𝑊 , ℝ , < ) ∈ 𝑊 ) |
| 110 |
75 108 109
|
sylancr |
⊢ ( 𝜑 → inf ( 𝑊 , ℝ , < ) ∈ 𝑊 ) |
| 111 |
17 110
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ 𝑊 ) |
| 112 |
74 111
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 113 |
112
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ∈ ℝ ) |
| 114 |
74
|
sseli |
⊢ ( 𝑚 ∈ 𝑊 → 𝑚 ∈ ℝ ) |
| 115 |
114
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑚 ∈ ℝ ) |
| 116 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → 𝑛 ≤ 𝑀 ) |
| 117 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ≤ 𝑀 ) |
| 118 |
|
infssuzle |
⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑚 ∈ 𝑊 ) → inf ( 𝑊 , ℝ , < ) ≤ 𝑚 ) |
| 119 |
75 118
|
mpan |
⊢ ( 𝑚 ∈ 𝑊 → inf ( 𝑊 , ℝ , < ) ≤ 𝑚 ) |
| 120 |
17 119
|
eqbrtrid |
⊢ ( 𝑚 ∈ 𝑊 → 𝑀 ≤ 𝑚 ) |
| 121 |
120
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑀 ≤ 𝑚 ) |
| 122 |
72 113 115 117 121
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ∧ 𝑚 ∈ 𝑊 ) → 𝑛 ≤ 𝑚 ) |
| 123 |
122
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 ) |
| 124 |
69 123
|
ssrabdv |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ⊆ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 1 ... 𝑀 ) ⊆ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 126 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 127 |
125 126
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 128 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ ( 1 ... 𝑀 ) ) |
| 129 |
125 128
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) |
| 130 |
127 129
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑖 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ∧ 𝑗 ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑊 𝑛 ≤ 𝑚 } ) ) |
| 131 |
130 96
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( 𝑖 = 𝑗 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) ) ) ) ) |
| 132 |
68 131
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑗 ) ) → 𝑖 = 𝑗 ) ) |
| 133 |
67 132
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ( 1 ... 𝑀 ) ∧ 𝑗 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 134 |
133
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
| 135 |
|
dff13 |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ ↔ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ℕ ∧ ∀ 𝑖 ∈ ( 1 ... 𝑀 ) ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑖 ) = ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
| 136 |
31 134 135
|
sylanbrc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ ) |
| 137 |
|
f1f1orn |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1→ ℕ → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) |
| 138 |
136 137
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) |
| 139 |
|
f1oeq3 |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) = ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) → ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) ) |
| 140 |
20 139
|
ax-mp |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ran ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) ) |
| 141 |
138 140
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 142 |
|
f1ofo |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 143 |
141 142
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) |
| 144 |
|
fofi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ ( ( 𝐺 ∘ 𝐾 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –onto→ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) |
| 145 |
52 143 144
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) |
| 146 |
|
fimaxre2 |
⊢ ( ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℝ ∧ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) |
| 147 |
35 145 146
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ≤ 𝑥 ) |
| 148 |
51 147
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℕ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) |
| 149 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 150 |
149
|
rexrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 151 |
150
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 152 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑧 ) ∈ Fin ) |
| 153 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... 𝑧 ) → 𝑗 ∈ ℕ ) |
| 154 |
|
eqid |
⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) |
| 155 |
154
|
ovolfsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 156 |
5 155
|
syl |
⊢ ( 𝜑 → ( ( abs ∘ − ) ∘ 𝐹 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 157 |
156
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 158 |
153 157
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ) |
| 159 |
|
elrege0 |
⊢ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) ) |
| 160 |
158 159
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) ) |
| 161 |
160
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 162 |
152 161
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 163 |
162
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 164 |
163
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ* ) |
| 165 |
154 4
|
ovolsf |
⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 166 |
5 165
|
syl |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 167 |
166
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 168 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 169 |
167 168
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 170 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 171 |
169 170
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 172 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 173 |
171 172
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 174 |
173
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 175 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 176 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑗 ∈ ℕ ) |
| 177 |
168 157
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 178 |
176 177
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 179 |
145 178
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 181 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
| 182 |
|
fss |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 183 |
5 181 182
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 184 |
73 111
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 185 |
26 184
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐾 ‘ 𝑀 ) ∈ 𝑈 ) |
| 186 |
8 185
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ∈ ℕ ) |
| 187 |
183 186
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 188 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℝ ) |
| 189 |
187 188
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℝ ) |
| 190 |
24 14
|
sselid |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
| 191 |
8 190
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐶 ) ∈ ℕ ) |
| 192 |
183 191
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ( ℝ × ℝ ) ) |
| 193 |
|
xp1st |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 194 |
192 193
|
syl |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℝ ) |
| 195 |
189 194
|
resubcld |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ∈ ℝ ) |
| 196 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 197 |
177
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 198 |
176 197
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 199 |
196 52 141 58 198
|
fsumf1o |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 200 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 201 |
|
ffvelcdm |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑈 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) |
| 202 |
26 55 201
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) |
| 203 |
200 202
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) |
| 204 |
154
|
ovolfsval |
⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 205 |
5 203 204
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 206 |
205
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 207 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 208 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → 𝐺 : 𝑈 ⟶ ℕ ) |
| 209 |
26
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑈 ) |
| 210 |
208 209
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ∈ ℕ ) |
| 211 |
207 210
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 212 |
|
xp2nd |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 213 |
211 212
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 214 |
55 213
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 215 |
214
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 216 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → 𝐹 : ℕ ⟶ ( ℝ × ℝ ) ) |
| 217 |
216 203
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) ) |
| 218 |
|
xp1st |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 219 |
217 218
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 220 |
219
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 221 |
52 215 220
|
fsumsub |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 222 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 223 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) → 𝑖 ∈ ℕ ) |
| 224 |
223 213
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 225 |
222 224
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ) |
| 226 |
225
|
recnd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 227 |
189
|
recnd |
⊢ ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ∈ ℂ ) |
| 228 |
75 111
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 229 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑀 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) |
| 230 |
229
|
fveq2d |
⊢ ( 𝑖 = 𝑀 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) |
| 231 |
230
|
fveq2d |
⊢ ( 𝑖 = 𝑀 → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) |
| 232 |
228 215 231
|
fsumm1 |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) + ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) |
| 233 |
226 227 232
|
comraddd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 234 |
|
2fveq3 |
⊢ ( 𝑖 = 1 → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) |
| 235 |
234
|
fveq2d |
⊢ ( 𝑖 = 1 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) |
| 236 |
235
|
fveq2d |
⊢ ( 𝑖 = 1 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) ) |
| 237 |
228 220 236
|
fsum1p |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 238 |
21 15 22 14
|
algr0 |
⊢ ( 𝜑 → ( 𝐾 ‘ 1 ) = 𝐶 ) |
| 239 |
238
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) = ( 𝐺 ‘ 𝐶 ) ) |
| 240 |
239
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) |
| 241 |
240
|
fveq2d |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) |
| 242 |
22
|
peano2zd |
⊢ ( 𝜑 → ( 1 + 1 ) ∈ ℤ ) |
| 243 |
184
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 244 |
|
1z |
⊢ 1 ∈ ℤ |
| 245 |
|
fzp1ss |
⊢ ( 1 ∈ ℤ → ( ( 1 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
| 246 |
244 245
|
mp1i |
⊢ ( 𝜑 → ( ( 1 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
| 247 |
246
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ) → 𝑖 ∈ ( 1 ... 𝑀 ) ) |
| 248 |
247 220
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℂ ) |
| 249 |
|
2fveq3 |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) = ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) |
| 250 |
249
|
fveq2d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 251 |
250
|
fveq2d |
⊢ ( 𝑖 = ( 𝑗 + 1 ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 252 |
22 242 243 248 251
|
fsumshftm |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) ) |
| 253 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 254 |
253 253
|
pncan3oi |
⊢ ( ( 1 + 1 ) − 1 ) = 1 |
| 255 |
254
|
oveq1i |
⊢ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) = ( 1 ... ( 𝑀 − 1 ) ) |
| 256 |
255
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 257 |
|
fvoveq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝐾 ‘ ( 𝑗 + 1 ) ) = ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) |
| 258 |
257
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) |
| 259 |
258
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 260 |
259
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 261 |
260
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 262 |
256 261
|
eqtri |
⊢ Σ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑗 + 1 ) ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 263 |
252 262
|
eqtrdi |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
| 264 |
241 263
|
oveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 1 ) ) ) ) + Σ 𝑖 ∈ ( ( 1 + 1 ) ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 265 |
237 264
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) = ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 266 |
233 265
|
oveq12d |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) − ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 267 |
194
|
recnd |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ∈ ℂ ) |
| 268 |
|
peano2nn |
⊢ ( 𝑖 ∈ ℕ → ( 𝑖 + 1 ) ∈ ℕ ) |
| 269 |
|
ffvelcdm |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑈 ∧ ( 𝑖 + 1 ) ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) |
| 270 |
26 268 269
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) |
| 271 |
208 270
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ∈ ℕ ) |
| 272 |
207 271
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ℝ × ℝ ) ) |
| 273 |
|
xp1st |
⊢ ( ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 274 |
272 273
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 275 |
223 274
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 276 |
222 275
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℝ ) |
| 277 |
276
|
recnd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ∈ ℂ ) |
| 278 |
227 226 267 277
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) − ( ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) + Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 279 |
221 266 278
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... 𝑀 ) ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 280 |
199 206 279
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 281 |
280 179
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ∈ ℝ ) |
| 282 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐾 ‘ 𝑛 ) = ( 𝐾 ‘ 𝑀 ) ) |
| 283 |
282
|
eleq2d |
⊢ ( 𝑛 = 𝑀 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 284 |
283 16
|
elrab2 |
⊢ ( 𝑀 ∈ 𝑊 ↔ ( 𝑀 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 285 |
111 284
|
sylib |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) ) |
| 286 |
285
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ) |
| 287 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ 𝑀 ) ∈ 𝑈 ) → ( 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) |
| 288 |
185 287
|
mpdan |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐾 ‘ 𝑀 ) ↔ ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) ) |
| 289 |
286 288
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) < 𝐵 ∧ 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) ) |
| 290 |
289
|
simp3d |
⊢ ( 𝜑 → 𝐵 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) ) |
| 291 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑈 ) → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) |
| 292 |
190 291
|
mpdan |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) ) |
| 293 |
13 292
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ∧ 𝐴 < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 294 |
293
|
simp2d |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) < 𝐴 ) |
| 295 |
2 194 189 1 290 294
|
lt2subd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) < ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 296 |
149 195 295
|
ltled |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ) |
| 297 |
223
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℕ ) |
| 298 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) |
| 299 |
243
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℤ ) |
| 300 |
|
elfzm11 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) |
| 301 |
244 299 300
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) ) |
| 302 |
298 301
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖 ∧ 𝑖 < 𝑀 ) ) |
| 303 |
302
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 < 𝑀 ) |
| 304 |
297
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑖 ∈ ℝ ) |
| 305 |
112
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → 𝑀 ∈ ℝ ) |
| 306 |
304 305
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 < 𝑀 ↔ ¬ 𝑀 ≤ 𝑖 ) ) |
| 307 |
303 306
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑀 ≤ 𝑖 ) |
| 308 |
|
infssuzle |
⊢ ( ( 𝑊 ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝑖 ∈ 𝑊 ) → inf ( 𝑊 , ℝ , < ) ≤ 𝑖 ) |
| 309 |
75 308
|
mpan |
⊢ ( 𝑖 ∈ 𝑊 → inf ( 𝑊 , ℝ , < ) ≤ 𝑖 ) |
| 310 |
17 309
|
eqbrtrid |
⊢ ( 𝑖 ∈ 𝑊 → 𝑀 ≤ 𝑖 ) |
| 311 |
307 310
|
nsyl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ¬ 𝑖 ∈ 𝑊 ) |
| 312 |
297 311
|
jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊 ) ) |
| 313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℕ ∧ ¬ 𝑖 ∈ 𝑊 ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) |
| 314 |
312 313
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) |
| 315 |
314
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 316 |
|
2fveq3 |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 317 |
316
|
fveq2d |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) = ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 318 |
317
|
breq1d |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 ↔ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 ) ) |
| 319 |
318 317
|
ifbieq1d |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) = if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ) |
| 320 |
|
fveq2 |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( 𝐻 ‘ 𝑡 ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 321 |
319 320
|
eleq12d |
⊢ ( 𝑡 = ( 𝐾 ‘ 𝑖 ) → ( if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ↔ if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) |
| 322 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
| 323 |
322
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ∀ 𝑡 ∈ 𝑇 if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝑡 ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ 𝑡 ) ) |
| 324 |
|
ffvelcdm |
⊢ ( ( 𝐾 : ℕ ⟶ 𝑇 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑇 ) |
| 325 |
23 223 324
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ 𝑖 ) ∈ 𝑇 ) |
| 326 |
321 323 325
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → if ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ≤ 𝐵 , ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) , 𝐵 ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 327 |
315 326
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 328 |
21 15 22 14 11
|
algrp1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 329 |
223 328
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) = ( 𝐻 ‘ ( 𝐾 ‘ 𝑖 ) ) ) |
| 330 |
327 329
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) |
| 331 |
223 270
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) |
| 332 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ∈ 𝑈 ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 333 |
331 332
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 334 |
330 333
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ∧ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 335 |
334
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) < ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 336 |
275 224 335
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 337 |
222 275 224 336
|
fsumle |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) |
| 338 |
225 276
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ↔ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) ) ) |
| 339 |
337 338
|
mpbird |
⊢ ( 𝜑 → 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) |
| 340 |
225 276
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ∈ ℝ ) |
| 341 |
195 340
|
addge01d |
⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ↔ ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) ) |
| 342 |
339 341
|
mpbid |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 343 |
149 195 281 296 342
|
letrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( ( ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑀 ) ) ) ) − ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ 𝐶 ) ) ) ) + ( Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 2nd ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ 𝑖 ) ) ) ) − Σ 𝑖 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( 1st ‘ ( 𝐹 ‘ ( 𝐺 ‘ ( 𝐾 ‘ ( 𝑖 + 1 ) ) ) ) ) ) ) ) |
| 344 |
343 280
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 345 |
344
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 346 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 1 ... 𝑧 ) ∈ Fin ) |
| 347 |
161
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℝ ) |
| 348 |
160
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 349 |
348
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → 0 ≤ ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 350 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ℕ ) |
| 351 |
350
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℕ ) |
| 352 |
351
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ℝ ) |
| 353 |
40
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℝ ) |
| 354 |
|
ltle |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) |
| 355 |
352 353 354
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 < 𝑧 → 𝑦 ≤ 𝑧 ) ) |
| 356 |
351 21
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑦 ∈ ( ℤ≥ ‘ 1 ) ) |
| 357 |
|
nnz |
⊢ ( 𝑧 ∈ ℕ → 𝑧 ∈ ℤ ) |
| 358 |
357
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → 𝑧 ∈ ℤ ) |
| 359 |
|
elfz5 |
⊢ ( ( 𝑦 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑧 ∈ ℤ ) → ( 𝑦 ∈ ( 1 ... 𝑧 ) ↔ 𝑦 ≤ 𝑧 ) ) |
| 360 |
356 358 359
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑧 ) ↔ 𝑦 ≤ 𝑧 ) ) |
| 361 |
355 360
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) ∧ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ) → ( 𝑦 < 𝑧 → 𝑦 ∈ ( 1 ... 𝑧 ) ) ) |
| 362 |
361
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℕ ) → ( ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) ) |
| 363 |
362
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) |
| 364 |
|
dfss3 |
⊢ ( ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ( 1 ... 𝑧 ) ↔ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 ∈ ( 1 ... 𝑧 ) ) |
| 365 |
363 364
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ⊆ ( 1 ... 𝑧 ) ) |
| 366 |
346 347 349 365
|
fsumless |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 367 |
175 180 163 345 366
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 368 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ) |
| 369 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → 𝑧 ∈ ℕ ) |
| 370 |
369 21
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → 𝑧 ∈ ( ℤ≥ ‘ 1 ) ) |
| 371 |
347
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) ∧ 𝑗 ∈ ( 1 ... 𝑧 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 372 |
368 370 371
|
fsumser |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑧 ) ) |
| 373 |
4
|
fveq1i |
⊢ ( 𝑆 ‘ 𝑧 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑧 ) |
| 374 |
372 373
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) = ( 𝑆 ‘ 𝑧 ) ) |
| 375 |
166
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
| 376 |
|
fnfvelrn |
⊢ ( ( 𝑆 Fn ℕ ∧ 𝑧 ∈ ℕ ) → ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) |
| 377 |
375 369 376
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) |
| 378 |
|
supxrub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( 𝑆 ‘ 𝑧 ) ∈ ran 𝑆 ) → ( 𝑆 ‘ 𝑧 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 379 |
171 377 378
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝑆 ‘ 𝑧 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 380 |
374 379
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → Σ 𝑗 ∈ ( 1 ... 𝑧 ) ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑗 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 381 |
151 164 174 367 380
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ℕ ∧ ∀ 𝑦 ∈ ( ( 𝐺 ∘ 𝐾 ) “ ( 1 ... 𝑀 ) ) 𝑦 < 𝑧 ) ) → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 382 |
148 381
|
rexlimddv |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |