Step |
Hyp |
Ref |
Expression |
1 |
|
ovolicc.1 |
|- ( ph -> A e. RR ) |
2 |
|
ovolicc.2 |
|- ( ph -> B e. RR ) |
3 |
|
ovolicc.3 |
|- ( ph -> A <_ B ) |
4 |
|
ovolicc2.4 |
|- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
5 |
|
ovolicc2.5 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
6 |
|
ovolicc2.6 |
|- ( ph -> U e. ( ~P ran ( (,) o. F ) i^i Fin ) ) |
7 |
|
ovolicc2.7 |
|- ( ph -> ( A [,] B ) C_ U. U ) |
8 |
|
ovolicc2.8 |
|- ( ph -> G : U --> NN ) |
9 |
|
ovolicc2.9 |
|- ( ( ph /\ t e. U ) -> ( ( (,) o. F ) ` ( G ` t ) ) = t ) |
10 |
|
ovolicc2.10 |
|- T = { u e. U | ( u i^i ( A [,] B ) ) =/= (/) } |
11 |
|
ovolicc2.11 |
|- ( ph -> H : T --> T ) |
12 |
|
ovolicc2.12 |
|- ( ( ph /\ t e. T ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
13 |
|
ovolicc2.13 |
|- ( ph -> A e. C ) |
14 |
|
ovolicc2.14 |
|- ( ph -> C e. T ) |
15 |
|
ovolicc2.15 |
|- K = seq 1 ( ( H o. 1st ) , ( NN X. { C } ) ) |
16 |
|
ovolicc2.16 |
|- W = { n e. NN | B e. ( K ` n ) } |
17 |
|
ovolicc2.17 |
|- M = inf ( W , RR , < ) |
18 |
|
arch |
|- ( x e. RR -> E. z e. NN x < z ) |
19 |
18
|
ad2antlr |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN x < z ) |
20 |
|
df-ima |
|- ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) |
21 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
22 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
23 |
21 15 22 14 11
|
algrf |
|- ( ph -> K : NN --> T ) |
24 |
10
|
ssrab3 |
|- T C_ U |
25 |
|
fss |
|- ( ( K : NN --> T /\ T C_ U ) -> K : NN --> U ) |
26 |
23 24 25
|
sylancl |
|- ( ph -> K : NN --> U ) |
27 |
|
fco |
|- ( ( G : U --> NN /\ K : NN --> U ) -> ( G o. K ) : NN --> NN ) |
28 |
8 26 27
|
syl2anc |
|- ( ph -> ( G o. K ) : NN --> NN ) |
29 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
30 |
|
fssres |
|- ( ( ( G o. K ) : NN --> NN /\ ( 1 ... M ) C_ NN ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
31 |
28 29 30
|
sylancl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN ) |
32 |
31
|
frnd |
|- ( ph -> ran ( ( G o. K ) |` ( 1 ... M ) ) C_ NN ) |
33 |
20 32
|
eqsstrid |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
34 |
|
nnssre |
|- NN C_ RR |
35 |
33 34
|
sstrdi |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
36 |
35
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ RR ) |
37 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ( G o. K ) " ( 1 ... M ) ) ) |
38 |
36 37
|
sseldd |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
39 |
|
simpllr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> x e. RR ) |
40 |
|
nnre |
|- ( z e. NN -> z e. RR ) |
41 |
40
|
ad2antlr |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
42 |
|
lelttr |
|- ( ( y e. RR /\ x e. RR /\ z e. RR ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
43 |
38 39 41 42
|
syl3anc |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( y <_ x /\ x < z ) -> y < z ) ) |
44 |
43
|
ancomsd |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( x < z /\ y <_ x ) -> y < z ) ) |
45 |
44
|
expdimp |
|- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) /\ x < z ) -> ( y <_ x -> y < z ) ) |
46 |
45
|
an32s |
|- ( ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y <_ x -> y < z ) ) |
47 |
46
|
ralimdva |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ x < z ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
48 |
47
|
impancom |
|- ( ( ( ( ph /\ x e. RR ) /\ z e. NN ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
49 |
48
|
an32s |
|- ( ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) /\ z e. NN ) -> ( x < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
50 |
49
|
reximdva |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> ( E. z e. NN x < z -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) |
51 |
19 50
|
mpd |
|- ( ( ( ph /\ x e. RR ) /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
52 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
53 |
|
fvres |
|- ( i e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
54 |
53
|
adantl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( G o. K ) ` i ) ) |
55 |
|
elfznn |
|- ( i e. ( 1 ... M ) -> i e. NN ) |
56 |
|
fvco3 |
|- ( ( K : NN --> T /\ i e. NN ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
57 |
23 55 56
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( G o. K ) ` i ) = ( G ` ( K ` i ) ) ) |
58 |
54 57
|
eqtrd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
59 |
58
|
adantrr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( G ` ( K ` i ) ) ) |
60 |
|
fvres |
|- ( j e. ( 1 ... M ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
61 |
60
|
ad2antll |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( ( G o. K ) ` j ) ) |
62 |
|
elfznn |
|- ( j e. ( 1 ... M ) -> j e. NN ) |
63 |
62
|
adantl |
|- ( ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) -> j e. NN ) |
64 |
|
fvco3 |
|- ( ( K : NN --> T /\ j e. NN ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
65 |
23 63 64
|
syl2an |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G o. K ) ` j ) = ( G ` ( K ` j ) ) ) |
66 |
61 65
|
eqtrd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) = ( G ` ( K ` j ) ) ) |
67 |
59 66
|
eqeq12d |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) <-> ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) ) ) |
68 |
|
2fveq3 |
|- ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
69 |
29
|
a1i |
|- ( ph -> ( 1 ... M ) C_ NN ) |
70 |
|
elfznn |
|- ( n e. ( 1 ... M ) -> n e. NN ) |
71 |
70
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. NN ) |
72 |
71
|
nnred |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n e. RR ) |
73 |
16
|
ssrab3 |
|- W C_ NN |
74 |
73 34
|
sstri |
|- W C_ RR |
75 |
73 21
|
sseqtri |
|- W C_ ( ZZ>= ` 1 ) |
76 |
|
nnnfi |
|- -. NN e. Fin |
77 |
6
|
elin2d |
|- ( ph -> U e. Fin ) |
78 |
|
ssfi |
|- ( ( U e. Fin /\ T C_ U ) -> T e. Fin ) |
79 |
77 24 78
|
sylancl |
|- ( ph -> T e. Fin ) |
80 |
79
|
adantr |
|- ( ( ph /\ W = (/) ) -> T e. Fin ) |
81 |
23
|
adantr |
|- ( ( ph /\ W = (/) ) -> K : NN --> T ) |
82 |
|
2fveq3 |
|- ( ( K ` i ) = ( K ` j ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` j ) ) ) ) |
83 |
82
|
fveq2d |
|- ( ( K ` i ) = ( K ` j ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) |
84 |
|
simpll |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ph ) |
85 |
|
simprl |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. NN ) |
86 |
|
ral0 |
|- A. m e. (/) n <_ m |
87 |
|
simplr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> W = (/) ) |
88 |
87
|
raleqdv |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( A. m e. W n <_ m <-> A. m e. (/) n <_ m ) ) |
89 |
86 88
|
mpbiri |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. m e. W n <_ m ) |
90 |
89
|
ralrimivw |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> A. n e. NN A. m e. W n <_ m ) |
91 |
|
rabid2 |
|- ( NN = { n e. NN | A. m e. W n <_ m } <-> A. n e. NN A. m e. W n <_ m ) |
92 |
90 91
|
sylibr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> NN = { n e. NN | A. m e. W n <_ m } ) |
93 |
85 92
|
eleqtrd |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
94 |
|
simprr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. NN ) |
95 |
94 92
|
eleqtrd |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem3 |
|- ( ( ph /\ ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
97 |
84 93 95 96
|
syl12anc |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
98 |
83 97
|
syl5ibr |
|- ( ( ( ph /\ W = (/) ) /\ ( i e. NN /\ j e. NN ) ) -> ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
99 |
98
|
ralrimivva |
|- ( ( ph /\ W = (/) ) -> A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) |
100 |
|
dff13 |
|- ( K : NN -1-1-> T <-> ( K : NN --> T /\ A. i e. NN A. j e. NN ( ( K ` i ) = ( K ` j ) -> i = j ) ) ) |
101 |
81 99 100
|
sylanbrc |
|- ( ( ph /\ W = (/) ) -> K : NN -1-1-> T ) |
102 |
|
f1domg |
|- ( T e. Fin -> ( K : NN -1-1-> T -> NN ~<_ T ) ) |
103 |
80 101 102
|
sylc |
|- ( ( ph /\ W = (/) ) -> NN ~<_ T ) |
104 |
|
domfi |
|- ( ( T e. Fin /\ NN ~<_ T ) -> NN e. Fin ) |
105 |
79 103 104
|
syl2an2r |
|- ( ( ph /\ W = (/) ) -> NN e. Fin ) |
106 |
105
|
ex |
|- ( ph -> ( W = (/) -> NN e. Fin ) ) |
107 |
106
|
necon3bd |
|- ( ph -> ( -. NN e. Fin -> W =/= (/) ) ) |
108 |
76 107
|
mpi |
|- ( ph -> W =/= (/) ) |
109 |
|
infssuzcl |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ W =/= (/) ) -> inf ( W , RR , < ) e. W ) |
110 |
75 108 109
|
sylancr |
|- ( ph -> inf ( W , RR , < ) e. W ) |
111 |
17 110
|
eqeltrid |
|- ( ph -> M e. W ) |
112 |
74 111
|
sselid |
|- ( ph -> M e. RR ) |
113 |
112
|
ad2antrr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M e. RR ) |
114 |
74
|
sseli |
|- ( m e. W -> m e. RR ) |
115 |
114
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> m e. RR ) |
116 |
|
elfzle2 |
|- ( n e. ( 1 ... M ) -> n <_ M ) |
117 |
116
|
ad2antlr |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ M ) |
118 |
|
infssuzle |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ m e. W ) -> inf ( W , RR , < ) <_ m ) |
119 |
75 118
|
mpan |
|- ( m e. W -> inf ( W , RR , < ) <_ m ) |
120 |
17 119
|
eqbrtrid |
|- ( m e. W -> M <_ m ) |
121 |
120
|
adantl |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> M <_ m ) |
122 |
72 113 115 117 121
|
letrd |
|- ( ( ( ph /\ n e. ( 1 ... M ) ) /\ m e. W ) -> n <_ m ) |
123 |
122
|
ralrimiva |
|- ( ( ph /\ n e. ( 1 ... M ) ) -> A. m e. W n <_ m ) |
124 |
69 123
|
ssrabdv |
|- ( ph -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
125 |
124
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( 1 ... M ) C_ { n e. NN | A. m e. W n <_ m } ) |
126 |
|
simprl |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. ( 1 ... M ) ) |
127 |
125 126
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> i e. { n e. NN | A. m e. W n <_ m } ) |
128 |
|
simprr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. ( 1 ... M ) ) |
129 |
125 128
|
sseldd |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> j e. { n e. NN | A. m e. W n <_ m } ) |
130 |
127 129
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i e. { n e. NN | A. m e. W n <_ m } /\ j e. { n e. NN | A. m e. W n <_ m } ) ) |
131 |
130 96
|
syldan |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( i = j <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` j ) ) ) ) ) ) |
132 |
68 131
|
syl5ibr |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( G ` ( K ` i ) ) = ( G ` ( K ` j ) ) -> i = j ) ) |
133 |
67 132
|
sylbid |
|- ( ( ph /\ ( i e. ( 1 ... M ) /\ j e. ( 1 ... M ) ) ) -> ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
134 |
133
|
ralrimivva |
|- ( ph -> A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) |
135 |
|
dff13 |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN <-> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) --> NN /\ A. i e. ( 1 ... M ) A. j e. ( 1 ... M ) ( ( ( ( G o. K ) |` ( 1 ... M ) ) ` i ) = ( ( ( G o. K ) |` ( 1 ... M ) ) ` j ) -> i = j ) ) ) |
136 |
31 134 135
|
sylanbrc |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN ) |
137 |
|
f1f1orn |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-> NN -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
138 |
136 137
|
syl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
139 |
|
f1oeq3 |
|- ( ( ( G o. K ) " ( 1 ... M ) ) = ran ( ( G o. K ) |` ( 1 ... M ) ) -> ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) ) |
140 |
20 139
|
ax-mp |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) <-> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ran ( ( G o. K ) |` ( 1 ... M ) ) ) |
141 |
138 140
|
sylibr |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
142 |
|
f1ofo |
|- ( ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( G o. K ) " ( 1 ... M ) ) -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
143 |
141 142
|
syl |
|- ( ph -> ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) |
144 |
|
fofi |
|- ( ( ( 1 ... M ) e. Fin /\ ( ( G o. K ) |` ( 1 ... M ) ) : ( 1 ... M ) -onto-> ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
145 |
52 143 144
|
syl2anc |
|- ( ph -> ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) |
146 |
|
fimaxre2 |
|- ( ( ( ( G o. K ) " ( 1 ... M ) ) C_ RR /\ ( ( G o. K ) " ( 1 ... M ) ) e. Fin ) -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
147 |
35 145 146
|
syl2anc |
|- ( ph -> E. x e. RR A. y e. ( ( G o. K ) " ( 1 ... M ) ) y <_ x ) |
148 |
51 147
|
r19.29a |
|- ( ph -> E. z e. NN A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) |
149 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
150 |
149
|
rexrd |
|- ( ph -> ( B - A ) e. RR* ) |
151 |
150
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR* ) |
152 |
|
fzfid |
|- ( ph -> ( 1 ... z ) e. Fin ) |
153 |
|
elfznn |
|- ( j e. ( 1 ... z ) -> j e. NN ) |
154 |
|
eqid |
|- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
155 |
154
|
ovolfsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
156 |
5 155
|
syl |
|- ( ph -> ( ( abs o. - ) o. F ) : NN --> ( 0 [,) +oo ) ) |
157 |
156
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
158 |
153 157
|
sylan2 |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) ) |
159 |
|
elrege0 |
|- ( ( ( ( abs o. - ) o. F ) ` j ) e. ( 0 [,) +oo ) <-> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
160 |
158 159
|
sylib |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( ( abs o. - ) o. F ) ` j ) e. RR /\ 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) ) |
161 |
160
|
simpld |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
162 |
152 161
|
fsumrecl |
|- ( ph -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
163 |
162
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
164 |
163
|
rexrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) e. RR* ) |
165 |
154 4
|
ovolsf |
|- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
166 |
5 165
|
syl |
|- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
167 |
166
|
frnd |
|- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
168 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
169 |
167 168
|
sstrdi |
|- ( ph -> ran S C_ RR ) |
170 |
|
ressxr |
|- RR C_ RR* |
171 |
169 170
|
sstrdi |
|- ( ph -> ran S C_ RR* ) |
172 |
|
supxrcl |
|- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
173 |
171 172
|
syl |
|- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
174 |
173
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
175 |
149
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) e. RR ) |
176 |
33
|
sselda |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> j e. NN ) |
177 |
168 157
|
sselid |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
178 |
176 177
|
syldan |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
179 |
145 178
|
fsumrecl |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
180 |
179
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
181 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
182 |
|
fss |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> F : NN --> ( RR X. RR ) ) |
183 |
5 181 182
|
sylancl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
184 |
73 111
|
sselid |
|- ( ph -> M e. NN ) |
185 |
26 184
|
ffvelrnd |
|- ( ph -> ( K ` M ) e. U ) |
186 |
8 185
|
ffvelrnd |
|- ( ph -> ( G ` ( K ` M ) ) e. NN ) |
187 |
183 186
|
ffvelrnd |
|- ( ph -> ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) ) |
188 |
|
xp2nd |
|- ( ( F ` ( G ` ( K ` M ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
189 |
187 188
|
syl |
|- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. RR ) |
190 |
24 14
|
sselid |
|- ( ph -> C e. U ) |
191 |
8 190
|
ffvelrnd |
|- ( ph -> ( G ` C ) e. NN ) |
192 |
183 191
|
ffvelrnd |
|- ( ph -> ( F ` ( G ` C ) ) e. ( RR X. RR ) ) |
193 |
|
xp1st |
|- ( ( F ` ( G ` C ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
194 |
192 193
|
syl |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. RR ) |
195 |
189 194
|
resubcld |
|- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) e. RR ) |
196 |
|
fveq2 |
|- ( j = ( G ` ( K ` i ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
197 |
177
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
198 |
176 197
|
syldan |
|- ( ( ph /\ j e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
199 |
196 52 141 58 198
|
fsumf1o |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) ) |
200 |
8
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> G : U --> NN ) |
201 |
|
ffvelrn |
|- ( ( K : NN --> U /\ i e. NN ) -> ( K ` i ) e. U ) |
202 |
26 55 201
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( K ` i ) e. U ) |
203 |
200 202
|
ffvelrnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( G ` ( K ` i ) ) e. NN ) |
204 |
154
|
ovolfsval |
|- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( G ` ( K ` i ) ) e. NN ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
205 |
5 203 204
|
syl2an2r |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
206 |
205
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( ( abs o. - ) o. F ) ` ( G ` ( K ` i ) ) ) = sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
207 |
183
|
adantr |
|- ( ( ph /\ i e. NN ) -> F : NN --> ( RR X. RR ) ) |
208 |
8
|
adantr |
|- ( ( ph /\ i e. NN ) -> G : U --> NN ) |
209 |
26
|
ffvelrnda |
|- ( ( ph /\ i e. NN ) -> ( K ` i ) e. U ) |
210 |
208 209
|
ffvelrnd |
|- ( ( ph /\ i e. NN ) -> ( G ` ( K ` i ) ) e. NN ) |
211 |
207 210
|
ffvelrnd |
|- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
212 |
|
xp2nd |
|- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
213 |
211 212
|
syl |
|- ( ( ph /\ i e. NN ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
214 |
55 213
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
215 |
214
|
recnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
216 |
183
|
adantr |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> F : NN --> ( RR X. RR ) ) |
217 |
216 203
|
ffvelrnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) ) |
218 |
|
xp1st |
|- ( ( F ` ( G ` ( K ` i ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
219 |
217 218
|
syl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
220 |
219
|
recnd |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
221 |
52 215 220
|
fsumsub |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
222 |
|
fzfid |
|- ( ph -> ( 1 ... ( M - 1 ) ) e. Fin ) |
223 |
|
elfznn |
|- ( i e. ( 1 ... ( M - 1 ) ) -> i e. NN ) |
224 |
223 213
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
225 |
222 224
|
fsumrecl |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR ) |
226 |
225
|
recnd |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
227 |
189
|
recnd |
|- ( ph -> ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) e. CC ) |
228 |
75 111
|
sselid |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
229 |
|
2fveq3 |
|- ( i = M -> ( G ` ( K ` i ) ) = ( G ` ( K ` M ) ) ) |
230 |
229
|
fveq2d |
|- ( i = M -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` M ) ) ) ) |
231 |
230
|
fveq2d |
|- ( i = M -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
232 |
228 215 231
|
fsumm1 |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) + ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
233 |
226 227 232
|
comraddd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
234 |
|
2fveq3 |
|- ( i = 1 -> ( G ` ( K ` i ) ) = ( G ` ( K ` 1 ) ) ) |
235 |
234
|
fveq2d |
|- ( i = 1 -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` 1 ) ) ) ) |
236 |
235
|
fveq2d |
|- ( i = 1 -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) ) |
237 |
228 220 236
|
fsum1p |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
238 |
21 15 22 14
|
algr0 |
|- ( ph -> ( K ` 1 ) = C ) |
239 |
238
|
fveq2d |
|- ( ph -> ( G ` ( K ` 1 ) ) = ( G ` C ) ) |
240 |
239
|
fveq2d |
|- ( ph -> ( F ` ( G ` ( K ` 1 ) ) ) = ( F ` ( G ` C ) ) ) |
241 |
240
|
fveq2d |
|- ( ph -> ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) = ( 1st ` ( F ` ( G ` C ) ) ) ) |
242 |
22
|
peano2zd |
|- ( ph -> ( 1 + 1 ) e. ZZ ) |
243 |
184
|
nnzd |
|- ( ph -> M e. ZZ ) |
244 |
|
1z |
|- 1 e. ZZ |
245 |
|
fzp1ss |
|- ( 1 e. ZZ -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
246 |
244 245
|
mp1i |
|- ( ph -> ( ( 1 + 1 ) ... M ) C_ ( 1 ... M ) ) |
247 |
246
|
sselda |
|- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> i e. ( 1 ... M ) ) |
248 |
247 220
|
syldan |
|- ( ( ph /\ i e. ( ( 1 + 1 ) ... M ) ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) e. CC ) |
249 |
|
2fveq3 |
|- ( i = ( j + 1 ) -> ( G ` ( K ` i ) ) = ( G ` ( K ` ( j + 1 ) ) ) ) |
250 |
249
|
fveq2d |
|- ( i = ( j + 1 ) -> ( F ` ( G ` ( K ` i ) ) ) = ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
251 |
250
|
fveq2d |
|- ( i = ( j + 1 ) -> ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
252 |
22 242 243 248 251
|
fsumshftm |
|- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) ) |
253 |
|
ax-1cn |
|- 1 e. CC |
254 |
253 253
|
pncan3oi |
|- ( ( 1 + 1 ) - 1 ) = 1 |
255 |
254
|
oveq1i |
|- ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) = ( 1 ... ( M - 1 ) ) |
256 |
255
|
sumeq1i |
|- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) |
257 |
|
fvoveq1 |
|- ( j = i -> ( K ` ( j + 1 ) ) = ( K ` ( i + 1 ) ) ) |
258 |
257
|
fveq2d |
|- ( j = i -> ( G ` ( K ` ( j + 1 ) ) ) = ( G ` ( K ` ( i + 1 ) ) ) ) |
259 |
258
|
fveq2d |
|- ( j = i -> ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) = ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
260 |
259
|
fveq2d |
|- ( j = i -> ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
261 |
260
|
cbvsumv |
|- sum_ j e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
262 |
256 261
|
eqtri |
|- sum_ j e. ( ( ( 1 + 1 ) - 1 ) ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( j + 1 ) ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) |
263 |
252 262
|
eqtrdi |
|- ( ph -> sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) |
264 |
241 263
|
oveq12d |
|- ( ph -> ( ( 1st ` ( F ` ( G ` ( K ` 1 ) ) ) ) + sum_ i e. ( ( 1 + 1 ) ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
265 |
237 264
|
eqtrd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) = ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
266 |
233 265
|
oveq12d |
|- ( ph -> ( sum_ i e. ( 1 ... M ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... M ) ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
267 |
194
|
recnd |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) e. CC ) |
268 |
|
peano2nn |
|- ( i e. NN -> ( i + 1 ) e. NN ) |
269 |
|
ffvelrn |
|- ( ( K : NN --> U /\ ( i + 1 ) e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
270 |
26 268 269
|
syl2an |
|- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) e. U ) |
271 |
208 270
|
ffvelrnd |
|- ( ( ph /\ i e. NN ) -> ( G ` ( K ` ( i + 1 ) ) ) e. NN ) |
272 |
207 271
|
ffvelrnd |
|- ( ( ph /\ i e. NN ) -> ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) ) |
273 |
|
xp1st |
|- ( ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) e. ( RR X. RR ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
274 |
272 273
|
syl |
|- ( ( ph /\ i e. NN ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
275 |
223 274
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
276 |
222 275
|
fsumrecl |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. RR ) |
277 |
276
|
recnd |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) e. CC ) |
278 |
227 226 267 277
|
addsub4d |
|- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) - ( ( 1st ` ( F ` ( G ` C ) ) ) + sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
279 |
221 266 278
|
3eqtrd |
|- ( ph -> sum_ i e. ( 1 ... M ) ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - ( 1st ` ( F ` ( G ` ( K ` i ) ) ) ) ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
280 |
199 206 279
|
3eqtrd |
|- ( ph -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
281 |
280 179
|
eqeltrrd |
|- ( ph -> ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) e. RR ) |
282 |
|
fveq2 |
|- ( n = M -> ( K ` n ) = ( K ` M ) ) |
283 |
282
|
eleq2d |
|- ( n = M -> ( B e. ( K ` n ) <-> B e. ( K ` M ) ) ) |
284 |
283 16
|
elrab2 |
|- ( M e. W <-> ( M e. NN /\ B e. ( K ` M ) ) ) |
285 |
111 284
|
sylib |
|- ( ph -> ( M e. NN /\ B e. ( K ` M ) ) ) |
286 |
285
|
simprd |
|- ( ph -> B e. ( K ` M ) ) |
287 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` M ) e. U ) -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
288 |
185 287
|
mpdan |
|- ( ph -> ( B e. ( K ` M ) <-> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) ) |
289 |
286 288
|
mpbid |
|- ( ph -> ( B e. RR /\ ( 1st ` ( F ` ( G ` ( K ` M ) ) ) ) < B /\ B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) ) |
290 |
289
|
simp3d |
|- ( ph -> B < ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) ) |
291 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ C e. U ) -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
292 |
190 291
|
mpdan |
|- ( ph -> ( A e. C <-> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) ) |
293 |
13 292
|
mpbid |
|- ( ph -> ( A e. RR /\ ( 1st ` ( F ` ( G ` C ) ) ) < A /\ A < ( 2nd ` ( F ` ( G ` C ) ) ) ) ) |
294 |
293
|
simp2d |
|- ( ph -> ( 1st ` ( F ` ( G ` C ) ) ) < A ) |
295 |
2 194 189 1 290 294
|
lt2subd |
|- ( ph -> ( B - A ) < ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
296 |
149 195 295
|
ltled |
|- ( ph -> ( B - A ) <_ ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) ) |
297 |
223
|
adantl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. NN ) |
298 |
|
simpr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 1 ... ( M - 1 ) ) ) |
299 |
243
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ ) |
300 |
|
elfzm11 |
|- ( ( 1 e. ZZ /\ M e. ZZ ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
301 |
244 299 300
|
sylancr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 1 ... ( M - 1 ) ) <-> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) ) |
302 |
298 301
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ZZ /\ 1 <_ i /\ i < M ) ) |
303 |
302
|
simp3d |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M ) |
304 |
297
|
nnred |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR ) |
305 |
112
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR ) |
306 |
304 305
|
ltnled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i < M <-> -. M <_ i ) ) |
307 |
303 306
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. M <_ i ) |
308 |
|
infssuzle |
|- ( ( W C_ ( ZZ>= ` 1 ) /\ i e. W ) -> inf ( W , RR , < ) <_ i ) |
309 |
75 308
|
mpan |
|- ( i e. W -> inf ( W , RR , < ) <_ i ) |
310 |
17 309
|
eqbrtrid |
|- ( i e. W -> M <_ i ) |
311 |
307 310
|
nsyl |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> -. i e. W ) |
312 |
297 311
|
jca |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. NN /\ -. i e. W ) ) |
313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
ovolicc2lem2 |
|- ( ( ph /\ ( i e. NN /\ -. i e. W ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
314 |
312 313
|
syldan |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) |
315 |
314
|
iftrued |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
316 |
|
2fveq3 |
|- ( t = ( K ` i ) -> ( F ` ( G ` t ) ) = ( F ` ( G ` ( K ` i ) ) ) ) |
317 |
316
|
fveq2d |
|- ( t = ( K ` i ) -> ( 2nd ` ( F ` ( G ` t ) ) ) = ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
318 |
317
|
breq1d |
|- ( t = ( K ` i ) -> ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B <-> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B ) ) |
319 |
318 317
|
ifbieq1d |
|- ( t = ( K ` i ) -> if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) = if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) ) |
320 |
|
fveq2 |
|- ( t = ( K ` i ) -> ( H ` t ) = ( H ` ( K ` i ) ) ) |
321 |
319 320
|
eleq12d |
|- ( t = ( K ` i ) -> ( if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) <-> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) ) |
322 |
12
|
ralrimiva |
|- ( ph -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
323 |
322
|
adantr |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> A. t e. T if ( ( 2nd ` ( F ` ( G ` t ) ) ) <_ B , ( 2nd ` ( F ` ( G ` t ) ) ) , B ) e. ( H ` t ) ) |
324 |
|
ffvelrn |
|- ( ( K : NN --> T /\ i e. NN ) -> ( K ` i ) e. T ) |
325 |
23 223 324
|
syl2an |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` i ) e. T ) |
326 |
321 323 325
|
rspcdva |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> if ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) <_ B , ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) , B ) e. ( H ` ( K ` i ) ) ) |
327 |
315 326
|
eqeltrrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( H ` ( K ` i ) ) ) |
328 |
21 15 22 14 11
|
algrp1 |
|- ( ( ph /\ i e. NN ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
329 |
223 328
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) = ( H ` ( K ` i ) ) ) |
330 |
327 329
|
eleqtrrd |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) ) |
331 |
223 270
|
sylan2 |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( K ` ( i + 1 ) ) e. U ) |
332 |
1 2 3 4 5 6 7 8 9
|
ovolicc2lem1 |
|- ( ( ph /\ ( K ` ( i + 1 ) ) e. U ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
333 |
331 332
|
syldan |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. ( K ` ( i + 1 ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
334 |
330 333
|
mpbid |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) e. RR /\ ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) /\ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
335 |
334
|
simp2d |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) < ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
336 |
275 224 335
|
ltled |
|- ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
337 |
222 275 224 336
|
fsumle |
|- ( ph -> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) |
338 |
225 276
|
subge0d |
|- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) <_ sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) ) ) |
339 |
337 338
|
mpbird |
|- ( ph -> 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) |
340 |
225 276
|
resubcld |
|- ( ph -> ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) e. RR ) |
341 |
195 340
|
addge01d |
|- ( ph -> ( 0 <_ ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) <-> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) ) |
342 |
339 341
|
mpbid |
|- ( ph -> ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
343 |
149 195 281 296 342
|
letrd |
|- ( ph -> ( B - A ) <_ ( ( ( 2nd ` ( F ` ( G ` ( K ` M ) ) ) ) - ( 1st ` ( F ` ( G ` C ) ) ) ) + ( sum_ i e. ( 1 ... ( M - 1 ) ) ( 2nd ` ( F ` ( G ` ( K ` i ) ) ) ) - sum_ i e. ( 1 ... ( M - 1 ) ) ( 1st ` ( F ` ( G ` ( K ` ( i + 1 ) ) ) ) ) ) ) ) |
344 |
343 280
|
breqtrrd |
|- ( ph -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
345 |
344
|
adantr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) ) |
346 |
|
fzfid |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( 1 ... z ) e. Fin ) |
347 |
161
|
adantlr |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. RR ) |
348 |
160
|
simprd |
|- ( ( ph /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
349 |
348
|
adantlr |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> 0 <_ ( ( ( abs o. - ) o. F ) ` j ) ) |
350 |
33
|
adantr |
|- ( ( ph /\ z e. NN ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ NN ) |
351 |
350
|
sselda |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. NN ) |
352 |
351
|
nnred |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. RR ) |
353 |
40
|
ad2antlr |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. RR ) |
354 |
|
ltle |
|- ( ( y e. RR /\ z e. RR ) -> ( y < z -> y <_ z ) ) |
355 |
352 353 354
|
syl2anc |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y <_ z ) ) |
356 |
351 21
|
eleqtrdi |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> y e. ( ZZ>= ` 1 ) ) |
357 |
|
nnz |
|- ( z e. NN -> z e. ZZ ) |
358 |
357
|
ad2antlr |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> z e. ZZ ) |
359 |
|
elfz5 |
|- ( ( y e. ( ZZ>= ` 1 ) /\ z e. ZZ ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
360 |
356 358 359
|
syl2anc |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y e. ( 1 ... z ) <-> y <_ z ) ) |
361 |
355 360
|
sylibrd |
|- ( ( ( ph /\ z e. NN ) /\ y e. ( ( G o. K ) " ( 1 ... M ) ) ) -> ( y < z -> y e. ( 1 ... z ) ) ) |
362 |
361
|
ralimdva |
|- ( ( ph /\ z e. NN ) -> ( A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) ) |
363 |
362
|
impr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
364 |
|
dfss3 |
|- ( ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) <-> A. y e. ( ( G o. K ) " ( 1 ... M ) ) y e. ( 1 ... z ) ) |
365 |
363 364
|
sylibr |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( ( G o. K ) " ( 1 ... M ) ) C_ ( 1 ... z ) ) |
366 |
346 347 349 365
|
fsumless |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( ( G o. K ) " ( 1 ... M ) ) ( ( ( abs o. - ) o. F ) ` j ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
367 |
175 180 163 345 366
|
letrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) ) |
368 |
|
eqidd |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) = ( ( ( abs o. - ) o. F ) ` j ) ) |
369 |
|
simprl |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. NN ) |
370 |
369 21
|
eleqtrdi |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> z e. ( ZZ>= ` 1 ) ) |
371 |
347
|
recnd |
|- ( ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) /\ j e. ( 1 ... z ) ) -> ( ( ( abs o. - ) o. F ) ` j ) e. CC ) |
372 |
368 370 371
|
fsumser |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) ) |
373 |
4
|
fveq1i |
|- ( S ` z ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` z ) |
374 |
372 373
|
eqtr4di |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) = ( S ` z ) ) |
375 |
166
|
ffnd |
|- ( ph -> S Fn NN ) |
376 |
|
fnfvelrn |
|- ( ( S Fn NN /\ z e. NN ) -> ( S ` z ) e. ran S ) |
377 |
375 369 376
|
syl2an2r |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) e. ran S ) |
378 |
|
supxrub |
|- ( ( ran S C_ RR* /\ ( S ` z ) e. ran S ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
379 |
171 377 378
|
syl2an2r |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( S ` z ) <_ sup ( ran S , RR* , < ) ) |
380 |
374 379
|
eqbrtrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> sum_ j e. ( 1 ... z ) ( ( ( abs o. - ) o. F ) ` j ) <_ sup ( ran S , RR* , < ) ) |
381 |
151 164 174 367 380
|
xrletrd |
|- ( ( ph /\ ( z e. NN /\ A. y e. ( ( G o. K ) " ( 1 ... M ) ) y < z ) ) -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |
382 |
148 381
|
rexlimddv |
|- ( ph -> ( B - A ) <_ sup ( ran S , RR* , < ) ) |