| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolicc.1 |
|
| 2 |
|
ovolicc.2 |
|
| 3 |
|
ovolicc.3 |
|
| 4 |
|
ovolicc2.4 |
|
| 5 |
|
ovolicc2.5 |
|
| 6 |
|
ovolicc2.6 |
|
| 7 |
|
ovolicc2.7 |
|
| 8 |
|
ovolicc2.8 |
|
| 9 |
|
ovolicc2.9 |
|
| 10 |
|
ovolicc2.10 |
|
| 11 |
1
|
rexrd |
|
| 12 |
2
|
rexrd |
|
| 13 |
|
lbicc2 |
|
| 14 |
11 12 3 13
|
syl3anc |
|
| 15 |
7 14
|
sseldd |
|
| 16 |
|
eluni2 |
|
| 17 |
15 16
|
sylib |
|
| 18 |
6
|
elin2d |
|
| 19 |
10
|
ssrab3 |
|
| 20 |
|
ssfi |
|
| 21 |
18 19 20
|
sylancl |
|
| 22 |
7
|
adantr |
|
| 23 |
|
ineq1 |
|
| 24 |
23
|
neeq1d |
|
| 25 |
24 10
|
elrab2 |
|
| 26 |
25
|
simplbi |
|
| 27 |
|
ffvelcdm |
|
| 28 |
8 26 27
|
syl2an |
|
| 29 |
5
|
ffvelcdmda |
|
| 30 |
28 29
|
syldan |
|
| 31 |
30
|
elin2d |
|
| 32 |
|
xp2nd |
|
| 33 |
31 32
|
syl |
|
| 34 |
2
|
adantr |
|
| 35 |
33 34
|
ifcld |
|
| 36 |
25
|
simprbi |
|
| 37 |
36
|
adantl |
|
| 38 |
|
n0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
1
|
adantr |
|
| 41 |
|
simprr |
|
| 42 |
41
|
elin2d |
|
| 43 |
2
|
adantr |
|
| 44 |
|
elicc2 |
|
| 45 |
1 43 44
|
syl2an2r |
|
| 46 |
42 45
|
mpbid |
|
| 47 |
46
|
simp1d |
|
| 48 |
31
|
adantrr |
|
| 49 |
48 32
|
syl |
|
| 50 |
46
|
simp2d |
|
| 51 |
41
|
elin1d |
|
| 52 |
28
|
adantrr |
|
| 53 |
|
fvco3 |
|
| 54 |
5 52 53
|
syl2an2r |
|
| 55 |
26 9
|
sylan2 |
|
| 56 |
55
|
adantrr |
|
| 57 |
|
1st2nd2 |
|
| 58 |
48 57
|
syl |
|
| 59 |
58
|
fveq2d |
|
| 60 |
|
df-ov |
|
| 61 |
59 60
|
eqtr4di |
|
| 62 |
54 56 61
|
3eqtr3d |
|
| 63 |
51 62
|
eleqtrd |
|
| 64 |
|
xp1st |
|
| 65 |
48 64
|
syl |
|
| 66 |
|
rexr |
|
| 67 |
|
rexr |
|
| 68 |
|
elioo2 |
|
| 69 |
66 67 68
|
syl2an |
|
| 70 |
65 49 69
|
syl2anc |
|
| 71 |
63 70
|
mpbid |
|
| 72 |
71
|
simp3d |
|
| 73 |
47 49 72
|
ltled |
|
| 74 |
40 47 49 50 73
|
letrd |
|
| 75 |
74
|
expr |
|
| 76 |
75
|
exlimdv |
|
| 77 |
39 76
|
mpd |
|
| 78 |
3
|
adantr |
|
| 79 |
|
breq2 |
|
| 80 |
|
breq2 |
|
| 81 |
79 80
|
ifboth |
|
| 82 |
77 78 81
|
syl2anc |
|
| 83 |
|
min2 |
|
| 84 |
33 34 83
|
syl2anc |
|
| 85 |
|
elicc2 |
|
| 86 |
1 2 85
|
syl2anc |
|
| 87 |
86
|
adantr |
|
| 88 |
35 82 84 87
|
mpbir3and |
|
| 89 |
22 88
|
sseldd |
|
| 90 |
|
eluni2 |
|
| 91 |
89 90
|
sylib |
|
| 92 |
|
simprl |
|
| 93 |
|
simprr |
|
| 94 |
88
|
adantr |
|
| 95 |
|
inelcm |
|
| 96 |
93 94 95
|
syl2anc |
|
| 97 |
|
ineq1 |
|
| 98 |
97
|
neeq1d |
|
| 99 |
98 10
|
elrab2 |
|
| 100 |
92 96 99
|
sylanbrc |
|
| 101 |
91 100 93
|
reximssdv |
|
| 102 |
101
|
ralrimiva |
|
| 103 |
|
eleq2 |
|
| 104 |
103
|
ac6sfi |
|
| 105 |
21 102 104
|
syl2anc |
|
| 106 |
105
|
adantr |
|
| 107 |
|
2fveq3 |
|
| 108 |
107
|
fveq2d |
|
| 109 |
108
|
breq1d |
|
| 110 |
109 108
|
ifbieq1d |
|
| 111 |
|
fveq2 |
|
| 112 |
110 111
|
eleq12d |
|
| 113 |
112
|
cbvralvw |
|
| 114 |
1
|
adantr |
|
| 115 |
2
|
adantr |
|
| 116 |
3
|
adantr |
|
| 117 |
5
|
adantr |
|
| 118 |
6
|
adantr |
|
| 119 |
7
|
adantr |
|
| 120 |
8
|
adantr |
|
| 121 |
9
|
adantlr |
|
| 122 |
|
simprrl |
|
| 123 |
|
simprrr |
|
| 124 |
112
|
rspccva |
|
| 125 |
123 124
|
sylan |
|
| 126 |
|
simprlr |
|
| 127 |
|
simprll |
|
| 128 |
14
|
adantr |
|
| 129 |
|
inelcm |
|
| 130 |
126 128 129
|
syl2anc |
|
| 131 |
|
ineq1 |
|
| 132 |
131
|
neeq1d |
|
| 133 |
132 10
|
elrab2 |
|
| 134 |
127 130 133
|
sylanbrc |
|
| 135 |
|
eqid |
|
| 136 |
|
fveq2 |
|
| 137 |
136
|
eleq2d |
|
| 138 |
137
|
cbvrabv |
|
| 139 |
|
eqid |
|
| 140 |
114 115 116 4 117 118 119 120 121 10 122 125 126 134 135 138 139
|
ovolicc2lem4 |
|
| 141 |
140
|
anassrs |
|
| 142 |
141
|
expr |
|
| 143 |
113 142
|
biimtrrid |
|
| 144 |
143
|
expimpd |
|
| 145 |
144
|
exlimdv |
|
| 146 |
106 145
|
mpd |
|
| 147 |
17 146
|
rexlimddv |
|