Metamath Proof Explorer


Theorem pgnbgreunbgrlem1

Description: Lemma 1 for pgnbgreunbgr . (Contributed by AV, 15-Nov-2025)

Ref Expression
Hypotheses pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
Assertion pgnbgreunbgrlem1 ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ) ) ) )

Proof

Step Hyp Ref Expression
1 pgnbgreunbgr.g 𝐺 = ( 5 gPetersenGr 2 )
2 pgnbgreunbgr.v 𝑉 = ( Vtx ‘ 𝐺 )
3 pgnbgreunbgr.e 𝐸 = ( Edg ‘ 𝐺 )
4 pgnbgreunbgr.n 𝑁 = ( 𝐺 NeighbVtx 𝑋 )
5 c0ex 0 ∈ V
6 vex 𝑦 ∈ V
7 5 6 op2ndd ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 2nd𝑋 ) = 𝑦 )
8 oveq1 ( ( 2nd𝑋 ) = 𝑦 → ( ( 2nd𝑋 ) + 1 ) = ( 𝑦 + 1 ) )
9 8 oveq1d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) = ( ( 𝑦 + 1 ) mod 5 ) )
10 9 opeq2d ( ( 2nd𝑋 ) = 𝑦 → ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ )
11 10 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ↔ 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) )
12 opeq2 ( ( 2nd𝑋 ) = 𝑦 → ⟨ 1 , ( 2nd𝑋 ) ⟩ = ⟨ 1 , 𝑦 ⟩ )
13 12 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ↔ 𝐿 = ⟨ 1 , 𝑦 ⟩ ) )
14 oveq1 ( ( 2nd𝑋 ) = 𝑦 → ( ( 2nd𝑋 ) − 1 ) = ( 𝑦 − 1 ) )
15 14 oveq1d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) = ( ( 𝑦 − 1 ) mod 5 ) )
16 15 opeq2d ( ( 2nd𝑋 ) = 𝑦 → ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ )
17 16 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ↔ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) )
18 11 13 17 3orbi123d ( ( 2nd𝑋 ) = 𝑦 → ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ↔ ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ) )
19 10 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ↔ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) )
20 12 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ↔ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) )
21 16 eqeq2d ( ( 2nd𝑋 ) = 𝑦 → ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ↔ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) )
22 19 20 21 3orbi123d ( ( 2nd𝑋 ) = 𝑦 → ( ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ↔ ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ) )
23 18 22 anbi12d ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ) ↔ ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ) ) )
24 simpr ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ )
25 simpl ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ )
26 24 25 neeq12d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) )
27 eqid ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩
28 eqneqall ( ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
29 27 28 ax-mp ( ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
30 26 29 biimtrdi ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
31 30 impd ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
32 31 ex ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
33 5eluz3 5 ∈ ( ℤ ‘ 3 )
34 pglem 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
35 eqid ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) = ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) )
36 eqid ( 0 ..^ 5 ) = ( 0 ..^ 5 )
37 35 36 1 3 gpgedgiov ( ( ( 5 ∈ ( ℤ ‘ 3 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸𝑏 = 𝑦 ) )
38 33 34 37 mpanl12 ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸𝑏 = 𝑦 ) )
39 opeq2 ( 𝑦 = 𝑏 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ )
40 39 eqcoms ( 𝑏 = 𝑦 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ )
41 38 40 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
42 41 adantld ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
43 preq1 ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } )
44 43 eleq1d ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
45 preq2 ( 𝐿 = ⟨ 1 , 𝑦 ⟩ → { ⟨ 0 , 𝑏 ⟩ , 𝐿 } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } )
46 45 eleq1d ( 𝐿 = ⟨ 1 , 𝑦 ⟩ → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) )
47 44 46 bi2anan9r ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) ) )
48 47 imbi1d ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
49 42 48 imbitrrid ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
50 49 adantld ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
51 50 ex ( 𝐿 = ⟨ 1 , 𝑦 ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
52 prcom { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ }
53 52 eleq1i ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 )
54 prcom { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } = { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ }
55 54 eleq1i ( { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 )
56 53 55 anbi12ci ( ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
57 5nn 5 ∈ ℕ
58 57 nnzi 5 ∈ ℤ
59 uzid ( 5 ∈ ℤ → 5 ∈ ( ℤ ‘ 5 ) )
60 58 59 ax-mp 5 ∈ ( ℤ ‘ 5 )
61 35 36 1 3 gpgedg2ov ( ( ( 5 ∈ ( ℤ ‘ 5 ) ∧ 2 ∈ ( 1 ..^ ( ⌈ ‘ ( 5 / 2 ) ) ) ) ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
62 60 34 61 mpanl12 ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ↔ 𝑏 = 𝑦 ) )
63 equcomiv ( 𝑏 = 𝑦𝑦 = 𝑏 )
64 63 opeq2d ( 𝑏 = 𝑦 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ )
65 62 64 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
66 56 65 biimtrid ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
67 preq2 ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → { ⟨ 0 , 𝑏 ⟩ , 𝐿 } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } )
68 67 eleq1d ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
69 44 68 bi2anan9r ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
70 69 imbi1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
71 66 70 imbitrrid ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
72 71 adantld ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
73 72 ex ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
74 32 51 73 3jaoi ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
75 prcom { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ }
76 75 eleq1i ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 )
77 76 41 biimtrid ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
78 77 adantrd ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
79 preq1 ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } )
80 79 eleq1d ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
81 preq2 ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → { ⟨ 0 , 𝑏 ⟩ , 𝐿 } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } )
82 81 eleq1d ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
83 80 82 bi2anan9r ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
84 83 imbi1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
85 78 84 imbitrrid ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
86 85 adantld ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
87 86 ex ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
88 simpr ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → 𝐾 = ⟨ 1 , 𝑦 ⟩ )
89 simpl ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → 𝐿 = ⟨ 1 , 𝑦 ⟩ )
90 88 89 neeq12d ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 1 , 𝑦 ⟩ ≠ ⟨ 1 , 𝑦 ⟩ ) )
91 eqid ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑦
92 eqneqall ( ⟨ 1 , 𝑦 ⟩ = ⟨ 1 , 𝑦 ⟩ → ( ⟨ 1 , 𝑦 ⟩ ≠ ⟨ 1 , 𝑦 ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
93 91 92 ax-mp ( ⟨ 1 , 𝑦 ⟩ ≠ ⟨ 1 , 𝑦 ⟩ → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
94 90 93 biimtrdi ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
95 94 impd ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
96 95 ex ( 𝐿 = ⟨ 1 , 𝑦 ⟩ → ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
97 77 adantrd ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
98 79 adantl ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } )
99 98 eleq1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
100 67 adantr ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → { ⟨ 0 , 𝑏 ⟩ , 𝐿 } = { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } )
101 100 eleq1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) )
102 99 101 anbi12d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
103 102 imbi1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 1 , 𝑦 ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
104 97 103 imbitrrid ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
105 104 adantld ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 1 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
106 105 ex ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
107 87 96 106 3jaoi ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 1 , 𝑦 ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
108 62 40 biimtrdi ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
109 108 adantl ( ( ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
110 109 a1i ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
111 simpl ( ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ )
112 simpr ( ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ )
113 111 112 neeq12d ( ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ∧ 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) )
114 113 ancoms ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( 𝐾𝐿 ↔ ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ) )
115 114 anbi1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ↔ ( ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ≠ ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) ) )
116 preq1 ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } )
117 116 eleq1d ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
118 117 82 bi2anan9r ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) ) )
119 118 imbi1d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
120 110 115 119 3imtr4d ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
121 120 ex ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
122 41 adantld ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
123 122 adantl ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
124 116 adantl ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → { 𝐾 , ⟨ 0 , 𝑏 ⟩ } = { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } )
125 124 eleq1d ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ↔ { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ) )
126 46 adantr ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ↔ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) )
127 125 126 anbi12d ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) ↔ ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) ) )
128 127 imbi1d ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , ⟨ 1 , 𝑦 ⟩ } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
129 123 128 imbitrrid ( ( 𝐿 = ⟨ 1 , 𝑦 ⟩ ∧ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
130 129 ex ( 𝐿 = ⟨ 1 , 𝑦 ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
131 eqeq2 ( ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ = 𝐿 → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ↔ 𝐾 = 𝐿 ) )
132 131 eqcoms ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ↔ 𝐾 = 𝐿 ) )
133 eqneqall ( 𝐾 = 𝐿 → ( 𝐾𝐿 → ( ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
134 133 impd ( 𝐾 = 𝐿 → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
135 132 134 biimtrdi ( 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
136 121 130 135 3jaoi ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
137 74 107 136 3jaod ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
138 137 imp ( ( ( 𝐿 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐿 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( 𝑦 + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , 𝑦 ⟩ ∨ 𝐾 = ⟨ 0 , ( ( 𝑦 − 1 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
139 23 138 biimtrdi ( ( 2nd𝑋 ) = 𝑦 → ( ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
140 7 139 syl ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
141 eqeq1 ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( 𝑋 = ⟨ 0 , 𝑏 ⟩ ↔ ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) )
142 141 imbi2d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ↔ ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) )
143 142 imbi2d ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ) ↔ ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → ⟨ 0 , 𝑦 ⟩ = ⟨ 0 , 𝑏 ⟩ ) ) ) )
144 140 143 sylibrd ( 𝑋 = ⟨ 0 , 𝑦 ⟩ → ( ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ) ) )
145 144 adantl ( ( 𝑋𝑉𝑋 = ⟨ 0 , 𝑦 ⟩ ) → ( ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ∧ ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ) ) )
146 145 expdcom ( ( 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐿 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐿 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) + 1 ) mod 5 ) ⟩ ∨ 𝐾 = ⟨ 1 , ( 2nd𝑋 ) ⟩ ∨ 𝐾 = ⟨ 0 , ( ( ( 2nd𝑋 ) − 1 ) mod 5 ) ⟩ ) → ( ( 𝑋𝑉𝑋 = ⟨ 0 , 𝑦 ⟩ ) → ( ( 𝐾𝐿 ∧ ( 𝑏 ∈ ( 0 ..^ 5 ) ∧ 𝑦 ∈ ( 0 ..^ 5 ) ) ) → ( ( { 𝐾 , ⟨ 0 , 𝑏 ⟩ } ∈ 𝐸 ∧ { ⟨ 0 , 𝑏 ⟩ , 𝐿 } ∈ 𝐸 ) → 𝑋 = ⟨ 0 , 𝑏 ⟩ ) ) ) ) )