| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgnbgreunbgr.g |
|- G = ( 5 gPetersenGr 2 ) |
| 2 |
|
pgnbgreunbgr.v |
|- V = ( Vtx ` G ) |
| 3 |
|
pgnbgreunbgr.e |
|- E = ( Edg ` G ) |
| 4 |
|
pgnbgreunbgr.n |
|- N = ( G NeighbVtx X ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
|
vex |
|- y e. _V |
| 7 |
5 6
|
op2ndd |
|- ( X = <. 0 , y >. -> ( 2nd ` X ) = y ) |
| 8 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) + 1 ) = ( y + 1 ) ) |
| 9 |
8
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) + 1 ) mod 5 ) = ( ( y + 1 ) mod 5 ) ) |
| 10 |
9
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. = <. 0 , ( ( y + 1 ) mod 5 ) >. ) |
| 11 |
10
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. <-> L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) ) |
| 12 |
|
opeq2 |
|- ( ( 2nd ` X ) = y -> <. 1 , ( 2nd ` X ) >. = <. 1 , y >. ) |
| 13 |
12
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( L = <. 1 , ( 2nd ` X ) >. <-> L = <. 1 , y >. ) ) |
| 14 |
|
oveq1 |
|- ( ( 2nd ` X ) = y -> ( ( 2nd ` X ) - 1 ) = ( y - 1 ) ) |
| 15 |
14
|
oveq1d |
|- ( ( 2nd ` X ) = y -> ( ( ( 2nd ` X ) - 1 ) mod 5 ) = ( ( y - 1 ) mod 5 ) ) |
| 16 |
15
|
opeq2d |
|- ( ( 2nd ` X ) = y -> <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. = <. 0 , ( ( y - 1 ) mod 5 ) >. ) |
| 17 |
16
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. <-> L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) |
| 18 |
11 13 17
|
3orbi123d |
|- ( ( 2nd ` X ) = y -> ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) <-> ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) ) |
| 19 |
10
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. <-> K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) ) |
| 20 |
12
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( K = <. 1 , ( 2nd ` X ) >. <-> K = <. 1 , y >. ) ) |
| 21 |
16
|
eqeq2d |
|- ( ( 2nd ` X ) = y -> ( K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. <-> K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) |
| 22 |
19 20 21
|
3orbi123d |
|- ( ( 2nd ` X ) = y -> ( ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) <-> ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ K = <. 1 , y >. \/ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) ) |
| 23 |
18 22
|
anbi12d |
|- ( ( 2nd ` X ) = y -> ( ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) <-> ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ K = <. 1 , y >. \/ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) ) ) |
| 24 |
|
simpr |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) |
| 25 |
|
simpl |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) |
| 26 |
24 25
|
neeq12d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( K =/= L <-> <. 0 , ( ( y + 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. ) ) |
| 27 |
|
eqid |
|- <. 0 , ( ( y + 1 ) mod 5 ) >. = <. 0 , ( ( y + 1 ) mod 5 ) >. |
| 28 |
|
eqneqall |
|- ( <. 0 , ( ( y + 1 ) mod 5 ) >. = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( <. 0 , ( ( y + 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 29 |
27 28
|
ax-mp |
|- ( <. 0 , ( ( y + 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 30 |
26 29
|
biimtrdi |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( K =/= L -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 31 |
30
|
impd |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 32 |
31
|
ex |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 33 |
|
5eluz3 |
|- 5 e. ( ZZ>= ` 3 ) |
| 34 |
|
pglem |
|- 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 35 |
|
eqid |
|- ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) = ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) |
| 36 |
|
eqid |
|- ( 0 ..^ 5 ) = ( 0 ..^ 5 ) |
| 37 |
35 36 1 3
|
gpgedgiov |
|- ( ( ( 5 e. ( ZZ>= ` 3 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( { <. 0 , b >. , <. 1 , y >. } e. E <-> b = y ) ) |
| 38 |
33 34 37
|
mpanl12 |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , b >. , <. 1 , y >. } e. E <-> b = y ) ) |
| 39 |
|
opeq2 |
|- ( y = b -> <. 0 , y >. = <. 0 , b >. ) |
| 40 |
39
|
eqcoms |
|- ( b = y -> <. 0 , y >. = <. 0 , b >. ) |
| 41 |
38 40
|
biimtrdi |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 0 , b >. , <. 1 , y >. } e. E -> <. 0 , y >. = <. 0 , b >. ) ) |
| 42 |
41
|
adantld |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 43 |
|
preq1 |
|- ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> { K , <. 0 , b >. } = { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } ) |
| 44 |
43
|
eleq1d |
|- ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( { K , <. 0 , b >. } e. E <-> { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E ) ) |
| 45 |
|
preq2 |
|- ( L = <. 1 , y >. -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 1 , y >. } ) |
| 46 |
45
|
eleq1d |
|- ( L = <. 1 , y >. -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 1 , y >. } e. E ) ) |
| 47 |
44 46
|
bi2anan9r |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) ) ) |
| 48 |
47
|
imbi1d |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 49 |
42 48
|
imbitrrid |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 50 |
49
|
adantld |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 51 |
50
|
ex |
|- ( L = <. 1 , y >. -> ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 52 |
|
prcom |
|- { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } = { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } |
| 53 |
52
|
eleq1i |
|- ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E <-> { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) |
| 54 |
|
prcom |
|- { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } = { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } |
| 55 |
54
|
eleq1i |
|- ( { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E <-> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E ) |
| 56 |
53 55
|
anbi12ci |
|- ( ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) <-> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 57 |
|
5nn |
|- 5 e. NN |
| 58 |
57
|
nnzi |
|- 5 e. ZZ |
| 59 |
|
uzid |
|- ( 5 e. ZZ -> 5 e. ( ZZ>= ` 5 ) ) |
| 60 |
58 59
|
ax-mp |
|- 5 e. ( ZZ>= ` 5 ) |
| 61 |
35 36 1 3
|
gpgedg2ov |
|- ( ( ( 5 e. ( ZZ>= ` 5 ) /\ 2 e. ( 1 ..^ ( |^ ` ( 5 / 2 ) ) ) ) /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) <-> b = y ) ) |
| 62 |
60 34 61
|
mpanl12 |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) <-> b = y ) ) |
| 63 |
|
equcomiv |
|- ( b = y -> y = b ) |
| 64 |
63
|
opeq2d |
|- ( b = y -> <. 0 , y >. = <. 0 , b >. ) |
| 65 |
62 64
|
biimtrdi |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 66 |
56 65
|
biimtrid |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 67 |
|
preq2 |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } ) |
| 68 |
67
|
eleq1d |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 69 |
44 68
|
bi2anan9r |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) ) |
| 70 |
69
|
imbi1d |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 0 , ( ( y + 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 71 |
66 70
|
imbitrrid |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 72 |
71
|
adantld |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 73 |
72
|
ex |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 74 |
32 51 73
|
3jaoi |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 75 |
|
prcom |
|- { <. 1 , y >. , <. 0 , b >. } = { <. 0 , b >. , <. 1 , y >. } |
| 76 |
75
|
eleq1i |
|- ( { <. 1 , y >. , <. 0 , b >. } e. E <-> { <. 0 , b >. , <. 1 , y >. } e. E ) |
| 77 |
76 41
|
biimtrid |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( { <. 1 , y >. , <. 0 , b >. } e. E -> <. 0 , y >. = <. 0 , b >. ) ) |
| 78 |
77
|
adantrd |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 79 |
|
preq1 |
|- ( K = <. 1 , y >. -> { K , <. 0 , b >. } = { <. 1 , y >. , <. 0 , b >. } ) |
| 80 |
79
|
eleq1d |
|- ( K = <. 1 , y >. -> ( { K , <. 0 , b >. } e. E <-> { <. 1 , y >. , <. 0 , b >. } e. E ) ) |
| 81 |
|
preq2 |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } ) |
| 82 |
81
|
eleq1d |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) |
| 83 |
80 82
|
bi2anan9r |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) ) |
| 84 |
83
|
imbi1d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 85 |
78 84
|
imbitrrid |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 86 |
85
|
adantld |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 87 |
86
|
ex |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( K = <. 1 , y >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 88 |
|
simpr |
|- ( ( L = <. 1 , y >. /\ K = <. 1 , y >. ) -> K = <. 1 , y >. ) |
| 89 |
|
simpl |
|- ( ( L = <. 1 , y >. /\ K = <. 1 , y >. ) -> L = <. 1 , y >. ) |
| 90 |
88 89
|
neeq12d |
|- ( ( L = <. 1 , y >. /\ K = <. 1 , y >. ) -> ( K =/= L <-> <. 1 , y >. =/= <. 1 , y >. ) ) |
| 91 |
|
eqid |
|- <. 1 , y >. = <. 1 , y >. |
| 92 |
|
eqneqall |
|- ( <. 1 , y >. = <. 1 , y >. -> ( <. 1 , y >. =/= <. 1 , y >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 93 |
91 92
|
ax-mp |
|- ( <. 1 , y >. =/= <. 1 , y >. -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 94 |
90 93
|
biimtrdi |
|- ( ( L = <. 1 , y >. /\ K = <. 1 , y >. ) -> ( K =/= L -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 95 |
94
|
impd |
|- ( ( L = <. 1 , y >. /\ K = <. 1 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 96 |
95
|
ex |
|- ( L = <. 1 , y >. -> ( K = <. 1 , y >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 97 |
77
|
adantrd |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 98 |
79
|
adantl |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> { K , <. 0 , b >. } = { <. 1 , y >. , <. 0 , b >. } ) |
| 99 |
98
|
eleq1d |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( { K , <. 0 , b >. } e. E <-> { <. 1 , y >. , <. 0 , b >. } e. E ) ) |
| 100 |
67
|
adantr |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> { <. 0 , b >. , L } = { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } ) |
| 101 |
100
|
eleq1d |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) |
| 102 |
99 101
|
anbi12d |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) ) ) |
| 103 |
102
|
imbi1d |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 1 , y >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y - 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 104 |
97 103
|
imbitrrid |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 105 |
104
|
adantld |
|- ( ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ K = <. 1 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 106 |
105
|
ex |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( K = <. 1 , y >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 107 |
87 96 106
|
3jaoi |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( K = <. 1 , y >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 108 |
62 40
|
biimtrdi |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 109 |
108
|
adantl |
|- ( ( <. 0 , ( ( y - 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 110 |
109
|
a1i |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( <. 0 , ( ( y - 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 111 |
|
simpl |
|- ( ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) |
| 112 |
|
simpr |
|- ( ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) |
| 113 |
111 112
|
neeq12d |
|- ( ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. /\ L = <. 0 , ( ( y + 1 ) mod 5 ) >. ) -> ( K =/= L <-> <. 0 , ( ( y - 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. ) ) |
| 114 |
113
|
ancoms |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( K =/= L <-> <. 0 , ( ( y - 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. ) ) |
| 115 |
114
|
anbi1d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) <-> ( <. 0 , ( ( y - 1 ) mod 5 ) >. =/= <. 0 , ( ( y + 1 ) mod 5 ) >. /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) ) ) |
| 116 |
|
preq1 |
|- ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> { K , <. 0 , b >. } = { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } ) |
| 117 |
116
|
eleq1d |
|- ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( { K , <. 0 , b >. } e. E <-> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E ) ) |
| 118 |
117 82
|
bi2anan9r |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) ) ) |
| 119 |
118
|
imbi1d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 0 , ( ( y + 1 ) mod 5 ) >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 120 |
110 115 119
|
3imtr4d |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 121 |
120
|
ex |
|- ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 122 |
41
|
adantld |
|- ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 123 |
122
|
adantl |
|- ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) |
| 124 |
116
|
adantl |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> { K , <. 0 , b >. } = { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } ) |
| 125 |
124
|
eleq1d |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( { K , <. 0 , b >. } e. E <-> { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E ) ) |
| 126 |
46
|
adantr |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( { <. 0 , b >. , L } e. E <-> { <. 0 , b >. , <. 1 , y >. } e. E ) ) |
| 127 |
125 126
|
anbi12d |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) <-> ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) ) ) |
| 128 |
127
|
imbi1d |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) <-> ( ( { <. 0 , ( ( y - 1 ) mod 5 ) >. , <. 0 , b >. } e. E /\ { <. 0 , b >. , <. 1 , y >. } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 129 |
123 128
|
imbitrrid |
|- ( ( L = <. 1 , y >. /\ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 130 |
129
|
ex |
|- ( L = <. 1 , y >. -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 131 |
|
eqeq2 |
|- ( <. 0 , ( ( y - 1 ) mod 5 ) >. = L -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. <-> K = L ) ) |
| 132 |
131
|
eqcoms |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. <-> K = L ) ) |
| 133 |
|
eqneqall |
|- ( K = L -> ( K =/= L -> ( ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 134 |
133
|
impd |
|- ( K = L -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 135 |
132 134
|
biimtrdi |
|- ( L = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 136 |
121 130 135
|
3jaoi |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( K = <. 0 , ( ( y - 1 ) mod 5 ) >. -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 137 |
74 107 136
|
3jaod |
|- ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ K = <. 1 , y >. \/ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 138 |
137
|
imp |
|- ( ( ( L = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ L = <. 1 , y >. \/ L = <. 0 , ( ( y - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( y + 1 ) mod 5 ) >. \/ K = <. 1 , y >. \/ K = <. 0 , ( ( y - 1 ) mod 5 ) >. ) ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 139 |
23 138
|
biimtrdi |
|- ( ( 2nd ` X ) = y -> ( ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 140 |
7 139
|
syl |
|- ( X = <. 0 , y >. -> ( ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 141 |
|
eqeq1 |
|- ( X = <. 0 , y >. -> ( X = <. 0 , b >. <-> <. 0 , y >. = <. 0 , b >. ) ) |
| 142 |
141
|
imbi2d |
|- ( X = <. 0 , y >. -> ( ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) <-> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) |
| 143 |
142
|
imbi2d |
|- ( X = <. 0 , y >. -> ( ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) <-> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> <. 0 , y >. = <. 0 , b >. ) ) ) ) |
| 144 |
140 143
|
sylibrd |
|- ( X = <. 0 , y >. -> ( ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 145 |
144
|
adantl |
|- ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) /\ ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) |
| 146 |
145
|
expdcom |
|- ( ( L = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ L = <. 1 , ( 2nd ` X ) >. \/ L = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) -> ( ( K = <. 0 , ( ( ( 2nd ` X ) + 1 ) mod 5 ) >. \/ K = <. 1 , ( 2nd ` X ) >. \/ K = <. 0 , ( ( ( 2nd ` X ) - 1 ) mod 5 ) >. ) -> ( ( X e. V /\ X = <. 0 , y >. ) -> ( ( K =/= L /\ ( b e. ( 0 ..^ 5 ) /\ y e. ( 0 ..^ 5 ) ) ) -> ( ( { K , <. 0 , b >. } e. E /\ { <. 0 , b >. , L } e. E ) -> X = <. 0 , b >. ) ) ) ) ) |