| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsbas.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsbas.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 3 |
|
prdsbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 4 |
|
prdsbas.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 5 |
|
prdsbas.i |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
| 6 |
|
prdshom.h |
⊢ 𝐻 = ( Hom ‘ 𝑃 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 8 |
1 2 3 4 5
|
prdsbas |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 10 |
1 2 3 4 5 9
|
prdsplusg |
⊢ ( 𝜑 → ( +g ‘ 𝑃 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 11 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 12 |
1 2 3 4 5 11
|
prdsmulr |
⊢ ( 𝜑 → ( .r ‘ 𝑃 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 13 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 14 |
1 2 3 4 5 7 13
|
prdsvsca |
⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑃 ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 15 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 16 |
|
eqid |
⊢ ( TopSet ‘ 𝑃 ) = ( TopSet ‘ 𝑃 ) |
| 17 |
1 2 3 4 5 16
|
prdstset |
⊢ ( 𝜑 → ( TopSet ‘ 𝑃 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
| 18 |
|
eqid |
⊢ ( le ‘ 𝑃 ) = ( le ‘ 𝑃 ) |
| 19 |
1 2 3 4 5 18
|
prdsle |
⊢ ( 𝜑 → ( le ‘ 𝑃 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
| 20 |
|
eqid |
⊢ ( dist ‘ 𝑃 ) = ( dist ‘ 𝑃 ) |
| 21 |
1 2 3 4 5 20
|
prdsds |
⊢ ( 𝜑 → ( dist ‘ 𝑃 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
| 22 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 23 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
| 24 |
1 7 5 8 10 12 14 15 17 19 21 22 23 2 3
|
prdsval |
⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑃 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
| 25 |
|
homid |
⊢ Hom = Slot ( Hom ‘ ndx ) |
| 26 |
|
ovssunirn |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) |
| 27 |
25
|
strfvss |
⊢ ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ( 𝑅 ‘ 𝑥 ) |
| 28 |
|
fvssunirn |
⊢ ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 |
| 29 |
|
rnss |
⊢ ( ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 → ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 ) |
| 30 |
|
uniss |
⊢ ( ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 → ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 ) |
| 31 |
28 29 30
|
mp2b |
⊢ ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 |
| 32 |
27 31
|
sstri |
⊢ ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 |
| 33 |
|
rnss |
⊢ ( ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 → ran ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ran ∪ ran ∪ ran 𝑅 ) |
| 34 |
|
uniss |
⊢ ( ran ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ran ∪ ran ∪ ran 𝑅 → ∪ ran ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 ) |
| 35 |
32 33 34
|
mp2b |
⊢ ∪ ran ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 |
| 36 |
26 35
|
sstri |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 |
| 37 |
36
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 |
| 38 |
|
ss2ixp |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran ∪ ran 𝑅 → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅 ) |
| 39 |
37 38
|
ax-mp |
⊢ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ X 𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅 |
| 40 |
3
|
dmexd |
⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
| 41 |
5 40
|
eqeltrrd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 42 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑊 → ran 𝑅 ∈ V ) |
| 43 |
|
uniexg |
⊢ ( ran 𝑅 ∈ V → ∪ ran 𝑅 ∈ V ) |
| 44 |
3 42 43
|
3syl |
⊢ ( 𝜑 → ∪ ran 𝑅 ∈ V ) |
| 45 |
|
rnexg |
⊢ ( ∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V ) |
| 46 |
|
uniexg |
⊢ ( ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V ) |
| 47 |
44 45 46
|
3syl |
⊢ ( 𝜑 → ∪ ran ∪ ran 𝑅 ∈ V ) |
| 48 |
|
rnexg |
⊢ ( ∪ ran ∪ ran 𝑅 ∈ V → ran ∪ ran ∪ ran 𝑅 ∈ V ) |
| 49 |
|
uniexg |
⊢ ( ran ∪ ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) |
| 50 |
47 48 49
|
3syl |
⊢ ( 𝜑 → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) |
| 51 |
|
ixpconstg |
⊢ ( ( 𝐼 ∈ V ∧ ∪ ran ∪ ran ∪ ran 𝑅 ∈ V ) → X 𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅 = ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 52 |
41 50 51
|
syl2anc |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅 = ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 53 |
39 52
|
sseqtrid |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 54 |
|
ovex |
⊢ ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V |
| 55 |
54
|
elpw2 |
⊢ ( X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ↔ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ⊆ ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 56 |
53 55
|
sylibr |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 57 |
56
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑔 ∈ 𝐵 X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 58 |
57
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 59 |
|
eqid |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) |
| 60 |
59
|
fmpo |
⊢ ( ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ∈ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ↔ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 61 |
58 60
|
sylib |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ) |
| 62 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
| 63 |
62 62
|
xpex |
⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 64 |
63
|
a1i |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ∈ V ) |
| 65 |
54
|
pwex |
⊢ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V |
| 66 |
65
|
a1i |
⊢ ( 𝜑 → 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V ) |
| 67 |
|
fex2 |
⊢ ( ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∧ ( 𝐵 × 𝐵 ) ∈ V ∧ 𝒫 ( ∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼 ) ∈ V ) → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) |
| 68 |
61 64 66 67
|
syl3anc |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) |
| 69 |
|
snsspr1 |
⊢ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 } ⊆ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } |
| 70 |
|
ssun2 |
⊢ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ⊆ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 71 |
69 70
|
sstri |
⊢ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 } ⊆ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
| 72 |
|
ssun2 |
⊢ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑃 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 73 |
71 72
|
sstri |
⊢ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( +g ‘ ndx ) , ( +g ‘ 𝑃 ) 〉 , 〈 ( .r ‘ ndx ) , ( .r ‘ 𝑃 ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( ·𝑠 ‘ 𝑃 ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) 〉 , 〈 ( le ‘ ndx ) , ( le ‘ 𝑃 ) 〉 , 〈 ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐 ∈ 𝐵 ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
| 74 |
24 6 25 68 73
|
prdsbaslem |
⊢ ( 𝜑 → 𝐻 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |