Metamath Proof Explorer


Theorem prdshom

Description: Structure product hom-sets. (Contributed by Mario Carneiro, 7-Jan-2017) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
prdshom.h 𝐻 = ( Hom ‘ 𝑃 )
Assertion prdshom ( 𝜑𝐻 = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 prdshom.h 𝐻 = ( Hom ‘ 𝑃 )
7 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
8 1 2 3 4 5 prdsbas ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
9 eqid ( +g𝑃 ) = ( +g𝑃 )
10 1 2 3 4 5 9 prdsplusg ( 𝜑 → ( +g𝑃 ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
11 eqid ( .r𝑃 ) = ( .r𝑃 )
12 1 2 3 4 5 11 prdsmulr ( 𝜑 → ( .r𝑃 ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
13 eqid ( ·𝑠𝑃 ) = ( ·𝑠𝑃 )
14 1 2 3 4 5 7 13 prdsvsca ( 𝜑 → ( ·𝑠𝑃 ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔𝐵 ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
15 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )
16 eqid ( TopSet ‘ 𝑃 ) = ( TopSet ‘ 𝑃 )
17 1 2 3 4 5 16 prdstset ( 𝜑 → ( TopSet ‘ 𝑃 ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
18 eqid ( le ‘ 𝑃 ) = ( le ‘ 𝑃 )
19 1 2 3 4 5 18 prdsle ( 𝜑 → ( le ‘ 𝑃 ) = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ 𝐵 ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } )
20 eqid ( dist ‘ 𝑃 ) = ( dist ‘ 𝑃 )
21 1 2 3 4 5 20 prdsds ( 𝜑 → ( dist ‘ 𝑃 ) = ( 𝑓𝐵 , 𝑔𝐵 ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) )
22 eqidd ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )
23 eqidd ( 𝜑 → ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) )
24 1 7 5 8 10 12 14 15 17 19 21 22 23 2 3 prdsval ( 𝜑𝑃 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑃 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑃 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ) )
25 homid Hom = Slot ( Hom ‘ ndx )
26 ovssunirn ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ( Hom ‘ ( 𝑅𝑥 ) )
27 25 strfvss ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ( 𝑅𝑥 )
28 fvssunirn ( 𝑅𝑥 ) ⊆ ran 𝑅
29 rnss ( ( 𝑅𝑥 ) ⊆ ran 𝑅 → ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
30 uniss ( ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
31 28 29 30 mp2b ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅
32 27 31 sstri ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅
33 rnss ( ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅 → ran ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 )
34 uniss ( ran ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 ran ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅 )
35 32 33 34 mp2b ran ( Hom ‘ ( 𝑅𝑥 ) ) ⊆ ran ran ran 𝑅
36 26 35 sstri ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ran ran 𝑅
37 36 rgenw 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ran ran 𝑅
38 ss2ixp ( ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ran ran ran 𝑅X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ X 𝑥𝐼 ran ran ran 𝑅 )
39 37 38 ax-mp X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ X 𝑥𝐼 ran ran ran 𝑅
40 3 dmexd ( 𝜑 → dom 𝑅 ∈ V )
41 5 40 eqeltrrd ( 𝜑𝐼 ∈ V )
42 rnexg ( 𝑅𝑊 → ran 𝑅 ∈ V )
43 uniexg ( ran 𝑅 ∈ V → ran 𝑅 ∈ V )
44 3 42 43 3syl ( 𝜑 ran 𝑅 ∈ V )
45 rnexg ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
46 uniexg ( ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
47 44 45 46 3syl ( 𝜑 ran ran 𝑅 ∈ V )
48 rnexg ( ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V )
49 uniexg ( ran ran ran 𝑅 ∈ V → ran ran ran 𝑅 ∈ V )
50 47 48 49 3syl ( 𝜑 ran ran ran 𝑅 ∈ V )
51 ixpconstg ( ( 𝐼 ∈ V ∧ ran ran ran 𝑅 ∈ V ) → X 𝑥𝐼 ran ran ran 𝑅 = ( ran ran ran 𝑅m 𝐼 ) )
52 41 50 51 syl2anc ( 𝜑X 𝑥𝐼 ran ran ran 𝑅 = ( ran ran ran 𝑅m 𝐼 ) )
53 39 52 sseqtrid ( 𝜑X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ( ran ran ran 𝑅m 𝐼 ) )
54 ovex ( ran ran ran 𝑅m 𝐼 ) ∈ V
55 54 elpw2 ( X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ( ran ran ran 𝑅m 𝐼 ) ↔ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ⊆ ( ran ran ran 𝑅m 𝐼 ) )
56 53 55 sylibr ( 𝜑X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ( ran ran ran 𝑅m 𝐼 ) )
57 56 ralrimivw ( 𝜑 → ∀ 𝑔𝐵 X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ( ran ran ran 𝑅m 𝐼 ) )
58 57 ralrimivw ( 𝜑 → ∀ 𝑓𝐵𝑔𝐵 X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ( ran ran ran 𝑅m 𝐼 ) )
59 eqid ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) )
60 59 fmpo ( ∀ 𝑓𝐵𝑔𝐵 X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ∈ 𝒫 ( ran ran ran 𝑅m 𝐼 ) ↔ ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ran ran ran 𝑅m 𝐼 ) )
61 58 60 sylib ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ran ran ran 𝑅m 𝐼 ) )
62 4 fvexi 𝐵 ∈ V
63 62 62 xpex ( 𝐵 × 𝐵 ) ∈ V
64 63 a1i ( 𝜑 → ( 𝐵 × 𝐵 ) ∈ V )
65 54 pwex 𝒫 ( ran ran ran 𝑅m 𝐼 ) ∈ V
66 65 a1i ( 𝜑 → 𝒫 ( ran ran ran 𝑅m 𝐼 ) ∈ V )
67 fex2 ( ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ran ran ran 𝑅m 𝐼 ) ∧ ( 𝐵 × 𝐵 ) ∈ V ∧ 𝒫 ( ran ran ran 𝑅m 𝐼 ) ∈ V ) → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ V )
68 61 64 66 67 syl3anc ( 𝜑 → ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∈ V )
69 snsspr1 { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ } ⊆ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ }
70 ssun2 { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ⊆ ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } )
71 69 70 sstri { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ } ⊆ ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } )
72 ssun2 ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑃 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑃 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
73 71 72 sstri { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ( +g𝑃 ) ⟩ , ⟨ ( .r ‘ ndx ) , ( .r𝑃 ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( ·𝑠𝑃 ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵 ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( TopSet ‘ 𝑃 ) ⟩ , ⟨ ( le ‘ ndx ) , ( le ‘ 𝑃 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( dist ‘ 𝑃 ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( 𝐵 × 𝐵 ) , 𝑐𝐵 ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
74 24 6 25 68 73 prdsvallem ( 𝜑𝐻 = ( 𝑓𝐵 , 𝑔𝐵X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )