Step |
Hyp |
Ref |
Expression |
1 |
|
prmrec.f |
β’ πΉ = ( π β β β¦ Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) ) |
2 |
|
inss2 |
β’ ( β β© ( 1 ... π ) ) β ( 1 ... π ) |
3 |
|
elinel2 |
β’ ( π β ( β β© ( 1 ... π ) ) β π β ( 1 ... π ) ) |
4 |
|
elfznn |
β’ ( π β ( 1 ... π ) β π β β ) |
5 |
|
nnrecre |
β’ ( π β β β ( 1 / π ) β β ) |
6 |
5
|
recnd |
β’ ( π β β β ( 1 / π ) β β ) |
7 |
3 4 6
|
3syl |
β’ ( π β ( β β© ( 1 ... π ) ) β ( 1 / π ) β β ) |
8 |
7
|
rgen |
β’ β π β ( β β© ( 1 ... π ) ) ( 1 / π ) β β |
9 |
2 8
|
pm3.2i |
β’ ( ( β β© ( 1 ... π ) ) β ( 1 ... π ) β§ β π β ( β β© ( 1 ... π ) ) ( 1 / π ) β β ) |
10 |
|
fzfi |
β’ ( 1 ... π ) β Fin |
11 |
10
|
olci |
β’ ( ( 1 ... π ) β ( β€β₯ β 1 ) β¨ ( 1 ... π ) β Fin ) |
12 |
|
sumss2 |
β’ ( ( ( ( β β© ( 1 ... π ) ) β ( 1 ... π ) β§ β π β ( β β© ( 1 ... π ) ) ( 1 / π ) β β ) β§ ( ( 1 ... π ) β ( β€β₯ β 1 ) β¨ ( 1 ... π ) β Fin ) ) β Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) = Ξ£ π β ( 1 ... π ) if ( π β ( β β© ( 1 ... π ) ) , ( 1 / π ) , 0 ) ) |
13 |
9 11 12
|
mp2an |
β’ Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) = Ξ£ π β ( 1 ... π ) if ( π β ( β β© ( 1 ... π ) ) , ( 1 / π ) , 0 ) |
14 |
|
elin |
β’ ( π β ( β β© ( 1 ... π ) ) β ( π β β β§ π β ( 1 ... π ) ) ) |
15 |
14
|
rbaib |
β’ ( π β ( 1 ... π ) β ( π β ( β β© ( 1 ... π ) ) β π β β ) ) |
16 |
15
|
ifbid |
β’ ( π β ( 1 ... π ) β if ( π β ( β β© ( 1 ... π ) ) , ( 1 / π ) , 0 ) = if ( π β β , ( 1 / π ) , 0 ) ) |
17 |
16
|
sumeq2i |
β’ Ξ£ π β ( 1 ... π ) if ( π β ( β β© ( 1 ... π ) ) , ( 1 / π ) , 0 ) = Ξ£ π β ( 1 ... π ) if ( π β β , ( 1 / π ) , 0 ) |
18 |
13 17
|
eqtri |
β’ Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) = Ξ£ π β ( 1 ... π ) if ( π β β , ( 1 / π ) , 0 ) |
19 |
4
|
adantl |
β’ ( ( π β β β§ π β ( 1 ... π ) ) β π β β ) |
20 |
|
prmnn |
β’ ( π β β β π β β ) |
21 |
20 6
|
syl |
β’ ( π β β β ( 1 / π ) β β ) |
22 |
21
|
adantl |
β’ ( ( β€ β§ π β β ) β ( 1 / π ) β β ) |
23 |
|
0cnd |
β’ ( ( β€ β§ Β¬ π β β ) β 0 β β ) |
24 |
22 23
|
ifclda |
β’ ( β€ β if ( π β β , ( 1 / π ) , 0 ) β β ) |
25 |
24
|
mptru |
β’ if ( π β β , ( 1 / π ) , 0 ) β β |
26 |
|
eleq1w |
β’ ( π = π β ( π β β β π β β ) ) |
27 |
|
oveq2 |
β’ ( π = π β ( 1 / π ) = ( 1 / π ) ) |
28 |
26 27
|
ifbieq1d |
β’ ( π = π β if ( π β β , ( 1 / π ) , 0 ) = if ( π β β , ( 1 / π ) , 0 ) ) |
29 |
28
|
cbvmptv |
β’ ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) = ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) |
30 |
29
|
fvmpt2 |
β’ ( ( π β β β§ if ( π β β , ( 1 / π ) , 0 ) β β ) β ( ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) β π ) = if ( π β β , ( 1 / π ) , 0 ) ) |
31 |
19 25 30
|
sylancl |
β’ ( ( π β β β§ π β ( 1 ... π ) ) β ( ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) β π ) = if ( π β β , ( 1 / π ) , 0 ) ) |
32 |
|
id |
β’ ( π β β β π β β ) |
33 |
|
nnuz |
β’ β = ( β€β₯ β 1 ) |
34 |
32 33
|
eleqtrdi |
β’ ( π β β β π β ( β€β₯ β 1 ) ) |
35 |
25
|
a1i |
β’ ( ( π β β β§ π β ( 1 ... π ) ) β if ( π β β , ( 1 / π ) , 0 ) β β ) |
36 |
31 34 35
|
fsumser |
β’ ( π β β β Ξ£ π β ( 1 ... π ) if ( π β β , ( 1 / π ) , 0 ) = ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β π ) ) |
37 |
18 36
|
eqtrid |
β’ ( π β β β Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) = ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β π ) ) |
38 |
37
|
mpteq2ia |
β’ ( π β β β¦ Ξ£ π β ( β β© ( 1 ... π ) ) ( 1 / π ) ) = ( π β β β¦ ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β π ) ) |
39 |
|
1z |
β’ 1 β β€ |
40 |
|
seqfn |
β’ ( 1 β β€ β seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn ( β€β₯ β 1 ) ) |
41 |
39 40
|
ax-mp |
β’ seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn ( β€β₯ β 1 ) |
42 |
33
|
fneq2i |
β’ ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn β β seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn ( β€β₯ β 1 ) ) |
43 |
41 42
|
mpbir |
β’ seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn β |
44 |
|
dffn5 |
β’ ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) Fn β β seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) = ( π β β β¦ ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β π ) ) ) |
45 |
43 44
|
mpbi |
β’ seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) = ( π β β β¦ ( seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β π ) ) |
46 |
38 1 45
|
3eqtr4i |
β’ πΉ = seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) |
47 |
29
|
prmreclem6 |
β’ Β¬ seq 1 ( + , ( π β β β¦ if ( π β β , ( 1 / π ) , 0 ) ) ) β dom β |
48 |
46 47
|
eqneltri |
β’ Β¬ πΉ β dom β |