| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pstmval.1 | ⊢  ∼   =  ( ~Met ‘ 𝐷 ) | 
						
							| 2 |  | df-pstm | ⊢ pstoMet  =  ( 𝑑  ∈  ∪  ran  PsMet  ↦  ( 𝑎  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ,  𝑏  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } ) ) | 
						
							| 3 |  | psmetdmdm | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  =  dom  dom  𝐷 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  𝑋  =  dom  dom  𝐷 ) | 
						
							| 5 |  | dmeq | ⊢ ( 𝑑  =  𝐷  →  dom  𝑑  =  dom  𝐷 ) | 
						
							| 6 | 5 | dmeqd | ⊢ ( 𝑑  =  𝐷  →  dom  dom  𝑑  =  dom  dom  𝐷 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  dom  dom  𝑑  =  dom  dom  𝐷 ) | 
						
							| 8 | 4 7 | eqtr4d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  𝑋  =  dom  dom  𝑑 ) | 
						
							| 9 |  | qseq1 | ⊢ ( 𝑋  =  dom  dom  𝑑  →  ( 𝑋  /   ∼  )  =  ( dom  dom  𝑑  /   ∼  ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( 𝑋  /   ∼  )  =  ( dom  dom  𝑑  /   ∼  ) ) | 
						
							| 11 |  | fveq2 | ⊢ ( 𝑑  =  𝐷  →  ( ~Met ‘ 𝑑 )  =  ( ~Met ‘ 𝐷 ) ) | 
						
							| 12 | 1 11 | eqtr4id | ⊢ ( 𝑑  =  𝐷  →   ∼   =  ( ~Met ‘ 𝑑 ) ) | 
						
							| 13 | 12 | qseq2d | ⊢ ( 𝑑  =  𝐷  →  ( dom  dom  𝑑  /   ∼  )  =  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( dom  dom  𝑑  /   ∼  )  =  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ) | 
						
							| 15 | 10 14 | eqtr2d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  =  ( 𝑋  /   ∼  ) ) | 
						
							| 16 |  | mpoeq12 | ⊢ ( ( ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  =  ( 𝑋  /   ∼  )  ∧  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  =  ( 𝑋  /   ∼  ) )  →  ( 𝑎  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ,  𝑏  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } )  =  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } ) ) | 
						
							| 17 | 15 15 16 | syl2anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( 𝑎  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ,  𝑏  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } )  =  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } ) ) | 
						
							| 18 |  | simp1r | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  𝑑  =  𝐷 ) | 
						
							| 19 | 18 | oveqd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  ( 𝑥 𝑑 𝑦 )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 20 | 19 | eqeq2d | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  ( 𝑧  =  ( 𝑥 𝑑 𝑦 )  ↔  𝑧  =  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 21 | 20 | 2rexbidv | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  ( ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 )  ↔  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 22 | 21 | abbidv | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) }  =  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } ) | 
						
							| 23 | 22 | unieqd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  ∧  𝑎  ∈  ( 𝑋  /   ∼  )  ∧  𝑏  ∈  ( 𝑋  /   ∼  ) )  →  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) }  =  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } ) | 
						
							| 24 | 23 | mpoeq3dva | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } )  =  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } ) ) | 
						
							| 25 | 17 24 | eqtrd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑑  =  𝐷 )  →  ( 𝑎  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) ) ,  𝑏  ∈  ( dom  dom  𝑑  /  ( ~Met ‘ 𝑑 ) )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝑑 𝑦 ) } )  =  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } ) ) | 
						
							| 26 |  | elfvunirn | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝐷  ∈  ∪  ran  PsMet ) | 
						
							| 27 |  | elfvex | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  𝑋  ∈  V ) | 
						
							| 28 |  | qsexg | ⊢ ( 𝑋  ∈  V  →  ( 𝑋  /   ∼  )  ∈  V ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑋  /   ∼  )  ∈  V ) | 
						
							| 30 |  | mpoexga | ⊢ ( ( ( 𝑋  /   ∼  )  ∈  V  ∧  ( 𝑋  /   ∼  )  ∈  V )  →  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } )  ∈  V ) | 
						
							| 31 | 29 29 30 | syl2anc | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } )  ∈  V ) | 
						
							| 32 | 2 25 26 31 | fvmptd2 | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( pstoMet ‘ 𝐷 )  =  ( 𝑎  ∈  ( 𝑋  /   ∼  ) ,  𝑏  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑥  ∈  𝑎 ∃ 𝑦  ∈  𝑏 𝑧  =  ( 𝑥 𝐷 𝑦 ) } ) ) |