| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pstmval.1 | ⊢  ∼   =  ( ~Met ‘ 𝐷 ) | 
						
							| 2 | 1 | pstmval | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( pstoMet ‘ 𝐷 )  =  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( pstoMet ‘ 𝐷 )  =  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) ) | 
						
							| 4 | 3 | oveqd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( [ 𝐴 ]  ∼  ( pstoMet ‘ 𝐷 ) [ 𝐵 ]  ∼  )  =  ( [ 𝐴 ]  ∼  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ]  ∼  ) ) | 
						
							| 5 | 1 | fvexi | ⊢  ∼   ∈  V | 
						
							| 6 | 5 | ecelqsi | ⊢ ( 𝐴  ∈  𝑋  →  [ 𝐴 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  [ 𝐴 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 8 | 5 | ecelqsi | ⊢ ( 𝐵  ∈  𝑋  →  [ 𝐵 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  [ 𝐵 ]  ∼   ∈  ( 𝑋  /   ∼  ) ) | 
						
							| 10 |  | rexeq | ⊢ ( 𝑥  =  [ 𝐴 ]  ∼   →  ( ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 11 | 10 | abbidv | ⊢ ( 𝑥  =  [ 𝐴 ]  ∼   →  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝑥  =  [ 𝐴 ]  ∼   →  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 13 |  | rexeq | ⊢ ( 𝑦  =  [ 𝐵 ]  ∼   →  ( ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑦  =  [ 𝐵 ]  ∼   →  ( ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) ) ) | 
						
							| 15 | 14 | abbidv | ⊢ ( 𝑦  =  [ 𝐵 ]  ∼   →  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 16 | 15 | unieqd | ⊢ ( 𝑦  =  [ 𝐵 ]  ∼   →  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 17 |  | eqid | ⊢ ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } )  =  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 18 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 𝐴 ]  ∼   ∈  V ) | 
						
							| 19 | 5 18 | ax-mp | ⊢ [ 𝐴 ]  ∼   ∈  V | 
						
							| 20 |  | ecexg | ⊢ (  ∼   ∈  V  →  [ 𝐵 ]  ∼   ∈  V ) | 
						
							| 21 | 5 20 | ax-mp | ⊢ [ 𝐵 ]  ∼   ∈  V | 
						
							| 22 | 19 21 | ab2rexex | ⊢ { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  ∈  V | 
						
							| 23 | 22 | uniex | ⊢ ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  ∈  V | 
						
							| 24 | 12 16 17 23 | ovmpo | ⊢ ( ( [ 𝐴 ]  ∼   ∈  ( 𝑋  /   ∼  )  ∧  [ 𝐵 ]  ∼   ∈  ( 𝑋  /   ∼  ) )  →  ( [ 𝐴 ]  ∼  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ]  ∼  )  =  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 25 | 7 9 24 | syl2anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( [ 𝐴 ]  ∼  ( 𝑥  ∈  ( 𝑋  /   ∼  ) ,  𝑦  ∈  ( 𝑋  /   ∼  )  ↦  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  𝑥 ∃ 𝑏  ∈  𝑦 𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ]  ∼  )  =  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) } ) | 
						
							| 26 |  | simpr3 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 27 |  | simpl1 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 28 |  | simpr1 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝑒  ∈  [ 𝐴 ]  ∼  ) | 
						
							| 29 |  | metidss | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ~Met ‘ 𝐷 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 30 | 1 29 | eqsstrid | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →   ∼   ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 31 |  | xpss | ⊢ ( 𝑋  ×  𝑋 )  ⊆  ( V  ×  V ) | 
						
							| 32 | 30 31 | sstrdi | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →   ∼   ⊆  ( V  ×  V ) ) | 
						
							| 33 |  | df-rel | ⊢ ( Rel   ∼   ↔   ∼   ⊆  ( V  ×  V ) ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  Rel   ∼  ) | 
						
							| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  Rel   ∼  ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  Rel   ∼  ) | 
						
							| 37 |  | relelec | ⊢ ( Rel   ∼   →  ( 𝑒  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝑒 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  ( 𝑒  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝑒 ) ) | 
						
							| 39 | 28 38 | mpbid | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝐴  ∼  𝑒 ) | 
						
							| 40 | 1 | breqi | ⊢ ( 𝐴  ∼  𝑒  ↔  𝐴 ( ~Met ‘ 𝐷 ) 𝑒 ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝐴 ( ~Met ‘ 𝐷 ) 𝑒 ) | 
						
							| 42 |  | simpr2 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝑓  ∈  [ 𝐵 ]  ∼  ) | 
						
							| 43 |  | relelec | ⊢ ( Rel   ∼   →  ( 𝑓  ∈  [ 𝐵 ]  ∼   ↔  𝐵  ∼  𝑓 ) ) | 
						
							| 44 | 36 43 | syl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  ( 𝑓  ∈  [ 𝐵 ]  ∼   ↔  𝐵  ∼  𝑓 ) ) | 
						
							| 45 | 42 44 | mpbid | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝐵  ∼  𝑓 ) | 
						
							| 46 | 1 | breqi | ⊢ ( 𝐵  ∼  𝑓  ↔  𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) | 
						
							| 47 | 45 46 | sylib | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) | 
						
							| 48 |  | metideq | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴 ( ~Met ‘ 𝐷 ) 𝑒  ∧  𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 49 | 27 41 47 48 | syl12anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 50 | 26 49 | eqtr4d | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 51 | 50 | adantlr | ⊢ ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) )  ∧  ( 𝑒  ∈  [ 𝐴 ]  ∼   ∧  𝑓  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) )  →  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 52 | 51 | 3anassrs | ⊢ ( ( ( ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) )  ∧  𝑒  ∈  [ 𝐴 ]  ∼  )  ∧  𝑓  ∈  [ 𝐵 ]  ∼  )  ∧  𝑧  =  ( 𝑒 𝐷 𝑓 ) )  →  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 53 |  | oveq1 | ⊢ ( 𝑎  =  𝑒  →  ( 𝑎 𝐷 𝑏 )  =  ( 𝑒 𝐷 𝑏 ) ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( 𝑎  =  𝑒  →  ( 𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  𝑧  =  ( 𝑒 𝐷 𝑏 ) ) ) | 
						
							| 55 |  | oveq2 | ⊢ ( 𝑏  =  𝑓  →  ( 𝑒 𝐷 𝑏 )  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 56 | 55 | eqeq2d | ⊢ ( 𝑏  =  𝑓  →  ( 𝑧  =  ( 𝑒 𝐷 𝑏 )  ↔  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) ) | 
						
							| 57 | 54 56 | cbvrex2vw | ⊢ ( ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  ∃ 𝑒  ∈  [ 𝐴 ]  ∼  ∃ 𝑓  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 58 | 57 | biimpi | ⊢ ( ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 )  →  ∃ 𝑒  ∈  [ 𝐴 ]  ∼  ∃ 𝑓  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) )  →  ∃ 𝑒  ∈  [ 𝐴 ]  ∼  ∃ 𝑓  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑒 𝐷 𝑓 ) ) | 
						
							| 60 | 52 59 | r19.29vva | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) )  →  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 61 |  | simpl1 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 62 |  | simpl2 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 63 |  | psmet0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐴 )  =  0 ) | 
						
							| 64 | 61 62 63 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐴 𝐷 𝐴 )  =  0 ) | 
						
							| 65 |  | relelec | ⊢ ( Rel   ∼   →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) ) | 
						
							| 66 | 61 34 65 | 3syl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  𝐴  ∼  𝐴 ) ) | 
						
							| 67 | 1 | a1i | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →   ∼   =  ( ~Met ‘ 𝐷 ) ) | 
						
							| 68 | 67 | breqd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐴  ∼  𝐴  ↔  𝐴 ( ~Met ‘ 𝐷 ) 𝐴 ) ) | 
						
							| 69 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐴  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐴  ↔  ( 𝐴 𝐷 𝐴 )  =  0 ) ) | 
						
							| 70 | 61 62 62 69 | syl12anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐴  ↔  ( 𝐴 𝐷 𝐴 )  =  0 ) ) | 
						
							| 71 | 66 68 70 | 3bitrd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐴  ∈  [ 𝐴 ]  ∼   ↔  ( 𝐴 𝐷 𝐴 )  =  0 ) ) | 
						
							| 72 | 64 71 | mpbird | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝐴  ∈  [ 𝐴 ]  ∼  ) | 
						
							| 73 |  | simpl3 | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝐵  ∈  𝑋 ) | 
						
							| 74 |  | psmet0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐵  ∈  𝑋 )  →  ( 𝐵 𝐷 𝐵 )  =  0 ) | 
						
							| 75 | 61 73 74 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐵 𝐷 𝐵 )  =  0 ) | 
						
							| 76 |  | relelec | ⊢ ( Rel   ∼   →  ( 𝐵  ∈  [ 𝐵 ]  ∼   ↔  𝐵  ∼  𝐵 ) ) | 
						
							| 77 | 61 34 76 | 3syl | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐵  ∈  [ 𝐵 ]  ∼   ↔  𝐵  ∼  𝐵 ) ) | 
						
							| 78 | 67 | breqd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐵  ∼  𝐵  ↔  𝐵 ( ~Met ‘ 𝐷 ) 𝐵 ) ) | 
						
							| 79 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝐵  ∈  𝑋  ∧  𝐵  ∈  𝑋 ) )  →  ( 𝐵 ( ~Met ‘ 𝐷 ) 𝐵  ↔  ( 𝐵 𝐷 𝐵 )  =  0 ) ) | 
						
							| 80 | 61 73 73 79 | syl12anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐵 ( ~Met ‘ 𝐷 ) 𝐵  ↔  ( 𝐵 𝐷 𝐵 )  =  0 ) ) | 
						
							| 81 | 77 78 80 | 3bitrd | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ( 𝐵  ∈  [ 𝐵 ]  ∼   ↔  ( 𝐵 𝐷 𝐵 )  =  0 ) ) | 
						
							| 82 | 75 81 | mpbird | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝐵  ∈  [ 𝐵 ]  ∼  ) | 
						
							| 83 |  | simpr | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 84 |  | rspceov | ⊢ ( ( 𝐴  ∈  [ 𝐴 ]  ∼   ∧  𝐵  ∈  [ 𝐵 ]  ∼   ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) ) | 
						
							| 85 | 72 82 83 84 | syl3anc | ⊢ ( ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  ∧  𝑧  =  ( 𝐴 𝐷 𝐵 ) )  →  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) ) | 
						
							| 86 | 60 85 | impbida | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 )  ↔  𝑧  =  ( 𝐴 𝐷 𝐵 ) ) ) | 
						
							| 87 | 86 | abbidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  { 𝑧  ∣  𝑧  =  ( 𝐴 𝐷 𝐵 ) } ) | 
						
							| 88 |  | df-sn | ⊢ { ( 𝐴 𝐷 𝐵 ) }  =  { 𝑧  ∣  𝑧  =  ( 𝐴 𝐷 𝐵 ) } | 
						
							| 89 | 87 88 | eqtr4di | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  { ( 𝐴 𝐷 𝐵 ) } ) | 
						
							| 90 | 89 | unieqd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  ∪  { ( 𝐴 𝐷 𝐵 ) } ) | 
						
							| 91 |  | ovex | ⊢ ( 𝐴 𝐷 𝐵 )  ∈  V | 
						
							| 92 | 91 | unisn | ⊢ ∪  { ( 𝐴 𝐷 𝐵 ) }  =  ( 𝐴 𝐷 𝐵 ) | 
						
							| 93 | 90 92 | eqtrdi | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ∪  { 𝑧  ∣  ∃ 𝑎  ∈  [ 𝐴 ]  ∼  ∃ 𝑏  ∈  [ 𝐵 ]  ∼  𝑧  =  ( 𝑎 𝐷 𝑏 ) }  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 94 | 4 25 93 | 3eqtrd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( [ 𝐴 ]  ∼  ( pstoMet ‘ 𝐷 ) [ 𝐵 ]  ∼  )  =  ( 𝐴 𝐷 𝐵 ) ) |