Step |
Hyp |
Ref |
Expression |
1 |
|
pstmval.1 |
⊢ ∼ = ( ~Met ‘ 𝐷 ) |
2 |
1
|
pstmval |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( pstoMet ‘ 𝐷 ) = ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( pstoMet ‘ 𝐷 ) = ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) ) |
4 |
3
|
oveqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( [ 𝐴 ] ∼ ( pstoMet ‘ 𝐷 ) [ 𝐵 ] ∼ ) = ( [ 𝐴 ] ∼ ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ] ∼ ) ) |
5 |
1
|
fvexi |
⊢ ∼ ∈ V |
6 |
5
|
ecelqsi |
⊢ ( 𝐴 ∈ 𝑋 → [ 𝐴 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → [ 𝐴 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
8 |
5
|
ecelqsi |
⊢ ( 𝐵 ∈ 𝑋 → [ 𝐵 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → [ 𝐵 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
10 |
|
rexeq |
⊢ ( 𝑥 = [ 𝐴 ] ∼ → ( ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) ) ) |
11 |
10
|
abbidv |
⊢ ( 𝑥 = [ 𝐴 ] ∼ → { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } = { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
12 |
11
|
unieqd |
⊢ ( 𝑥 = [ 𝐴 ] ∼ → ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } = ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
13 |
|
rexeq |
⊢ ( 𝑦 = [ 𝐵 ] ∼ → ( ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑦 = [ 𝐵 ] ∼ → ( ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) ) |
15 |
14
|
abbidv |
⊢ ( 𝑦 = [ 𝐵 ] ∼ → { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } = { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
16 |
15
|
unieqd |
⊢ ( 𝑦 = [ 𝐵 ] ∼ → ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } = ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) = ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
18 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝐴 ] ∼ ∈ V ) |
19 |
5 18
|
ax-mp |
⊢ [ 𝐴 ] ∼ ∈ V |
20 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝐵 ] ∼ ∈ V ) |
21 |
5 20
|
ax-mp |
⊢ [ 𝐵 ] ∼ ∈ V |
22 |
19 21
|
ab2rexex |
⊢ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ∈ V |
23 |
22
|
uniex |
⊢ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ∈ V |
24 |
12 16 17 23
|
ovmpo |
⊢ ( ( [ 𝐴 ] ∼ ∈ ( 𝑋 / ∼ ) ∧ [ 𝐵 ] ∼ ∈ ( 𝑋 / ∼ ) ) → ( [ 𝐴 ] ∼ ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ] ∼ ) = ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
25 |
7 9 24
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( [ 𝐴 ] ∼ ( 𝑥 ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ ∪ { 𝑧 ∣ ∃ 𝑎 ∈ 𝑥 ∃ 𝑏 ∈ 𝑦 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) [ 𝐵 ] ∼ ) = ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } ) |
26 |
|
simpr3 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝑧 = ( 𝑒 𝐷 𝑓 ) ) |
27 |
|
simpl1 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
28 |
|
simpr1 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝑒 ∈ [ 𝐴 ] ∼ ) |
29 |
|
metidss |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) ⊆ ( 𝑋 × 𝑋 ) ) |
30 |
1 29
|
eqsstrid |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
31 |
|
xpss |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) |
32 |
30 31
|
sstrdi |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∼ ⊆ ( V × V ) ) |
33 |
|
df-rel |
⊢ ( Rel ∼ ↔ ∼ ⊆ ( V × V ) ) |
34 |
32 33
|
sylibr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → Rel ∼ ) |
35 |
34
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → Rel ∼ ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → Rel ∼ ) |
37 |
|
relelec |
⊢ ( Rel ∼ → ( 𝑒 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝑒 ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → ( 𝑒 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝑒 ) ) |
39 |
28 38
|
mpbid |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝐴 ∼ 𝑒 ) |
40 |
1
|
breqi |
⊢ ( 𝐴 ∼ 𝑒 ↔ 𝐴 ( ~Met ‘ 𝐷 ) 𝑒 ) |
41 |
39 40
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝐴 ( ~Met ‘ 𝐷 ) 𝑒 ) |
42 |
|
simpr2 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝑓 ∈ [ 𝐵 ] ∼ ) |
43 |
|
relelec |
⊢ ( Rel ∼ → ( 𝑓 ∈ [ 𝐵 ] ∼ ↔ 𝐵 ∼ 𝑓 ) ) |
44 |
36 43
|
syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → ( 𝑓 ∈ [ 𝐵 ] ∼ ↔ 𝐵 ∼ 𝑓 ) ) |
45 |
42 44
|
mpbid |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝐵 ∼ 𝑓 ) |
46 |
1
|
breqi |
⊢ ( 𝐵 ∼ 𝑓 ↔ 𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) |
47 |
45 46
|
sylib |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) |
48 |
|
metideq |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ( ~Met ‘ 𝐷 ) 𝑒 ∧ 𝐵 ( ~Met ‘ 𝐷 ) 𝑓 ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑒 𝐷 𝑓 ) ) |
49 |
27 41 47 48
|
syl12anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → ( 𝐴 𝐷 𝐵 ) = ( 𝑒 𝐷 𝑓 ) ) |
50 |
26 49
|
eqtr4d |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝑧 = ( 𝐴 𝐷 𝐵 ) ) |
51 |
50
|
adantlr |
⊢ ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) ∧ ( 𝑒 ∈ [ 𝐴 ] ∼ ∧ 𝑓 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) → 𝑧 = ( 𝐴 𝐷 𝐵 ) ) |
52 |
51
|
3anassrs |
⊢ ( ( ( ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) ∧ 𝑒 ∈ [ 𝐴 ] ∼ ) ∧ 𝑓 ∈ [ 𝐵 ] ∼ ) ∧ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) → 𝑧 = ( 𝐴 𝐷 𝐵 ) ) |
53 |
|
oveq1 |
⊢ ( 𝑎 = 𝑒 → ( 𝑎 𝐷 𝑏 ) = ( 𝑒 𝐷 𝑏 ) ) |
54 |
53
|
eqeq2d |
⊢ ( 𝑎 = 𝑒 → ( 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ 𝑧 = ( 𝑒 𝐷 𝑏 ) ) ) |
55 |
|
oveq2 |
⊢ ( 𝑏 = 𝑓 → ( 𝑒 𝐷 𝑏 ) = ( 𝑒 𝐷 𝑓 ) ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑏 = 𝑓 → ( 𝑧 = ( 𝑒 𝐷 𝑏 ) ↔ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) ) |
57 |
54 56
|
cbvrex2vw |
⊢ ( ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ ∃ 𝑒 ∈ [ 𝐴 ] ∼ ∃ 𝑓 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) |
58 |
57
|
biimpi |
⊢ ( ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) → ∃ 𝑒 ∈ [ 𝐴 ] ∼ ∃ 𝑓 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) → ∃ 𝑒 ∈ [ 𝐴 ] ∼ ∃ 𝑓 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑒 𝐷 𝑓 ) ) |
60 |
52 59
|
r19.29vva |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) → 𝑧 = ( 𝐴 𝐷 𝐵 ) ) |
61 |
|
simpl1 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
62 |
|
simpl2 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝐴 ∈ 𝑋 ) |
63 |
|
psmet0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |
64 |
61 62 63
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐴 𝐷 𝐴 ) = 0 ) |
65 |
|
relelec |
⊢ ( Rel ∼ → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
66 |
61 34 65
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
67 |
1
|
a1i |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ∼ = ( ~Met ‘ 𝐷 ) ) |
68 |
67
|
breqd |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐴 ∼ 𝐴 ↔ 𝐴 ( ~Met ‘ 𝐷 ) 𝐴 ) ) |
69 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐴 ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
70 |
61 62 62 69
|
syl12anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐴 ( ~Met ‘ 𝐷 ) 𝐴 ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
71 |
66 68 70
|
3bitrd |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ ( 𝐴 𝐷 𝐴 ) = 0 ) ) |
72 |
64 71
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝐴 ∈ [ 𝐴 ] ∼ ) |
73 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝐵 ∈ 𝑋 ) |
74 |
|
psmet0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
75 |
61 73 74
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐵 𝐷 𝐵 ) = 0 ) |
76 |
|
relelec |
⊢ ( Rel ∼ → ( 𝐵 ∈ [ 𝐵 ] ∼ ↔ 𝐵 ∼ 𝐵 ) ) |
77 |
61 34 76
|
3syl |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐵 ∈ [ 𝐵 ] ∼ ↔ 𝐵 ∼ 𝐵 ) ) |
78 |
67
|
breqd |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐵 ∼ 𝐵 ↔ 𝐵 ( ~Met ‘ 𝐷 ) 𝐵 ) ) |
79 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐵 ( ~Met ‘ 𝐷 ) 𝐵 ↔ ( 𝐵 𝐷 𝐵 ) = 0 ) ) |
80 |
61 73 73 79
|
syl12anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐵 ( ~Met ‘ 𝐷 ) 𝐵 ↔ ( 𝐵 𝐷 𝐵 ) = 0 ) ) |
81 |
77 78 80
|
3bitrd |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ( 𝐵 ∈ [ 𝐵 ] ∼ ↔ ( 𝐵 𝐷 𝐵 ) = 0 ) ) |
82 |
75 81
|
mpbird |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝐵 ∈ [ 𝐵 ] ∼ ) |
83 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → 𝑧 = ( 𝐴 𝐷 𝐵 ) ) |
84 |
|
rspceov |
⊢ ( ( 𝐴 ∈ [ 𝐴 ] ∼ ∧ 𝐵 ∈ [ 𝐵 ] ∼ ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) |
85 |
72 82 83 84
|
syl3anc |
⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) → ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ) |
86 |
60 85
|
impbida |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) ↔ 𝑧 = ( 𝐴 𝐷 𝐵 ) ) ) |
87 |
86
|
abbidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } = { 𝑧 ∣ 𝑧 = ( 𝐴 𝐷 𝐵 ) } ) |
88 |
|
df-sn |
⊢ { ( 𝐴 𝐷 𝐵 ) } = { 𝑧 ∣ 𝑧 = ( 𝐴 𝐷 𝐵 ) } |
89 |
87 88
|
eqtr4di |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } = { ( 𝐴 𝐷 𝐵 ) } ) |
90 |
89
|
unieqd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } = ∪ { ( 𝐴 𝐷 𝐵 ) } ) |
91 |
|
ovex |
⊢ ( 𝐴 𝐷 𝐵 ) ∈ V |
92 |
91
|
unisn |
⊢ ∪ { ( 𝐴 𝐷 𝐵 ) } = ( 𝐴 𝐷 𝐵 ) |
93 |
90 92
|
eqtrdi |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∪ { 𝑧 ∣ ∃ 𝑎 ∈ [ 𝐴 ] ∼ ∃ 𝑏 ∈ [ 𝐵 ] ∼ 𝑧 = ( 𝑎 𝐷 𝑏 ) } = ( 𝐴 𝐷 𝐵 ) ) |
94 |
4 25 93
|
3eqtrd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( [ 𝐴 ] ∼ ( pstoMet ‘ 𝐷 ) [ 𝐵 ] ∼ ) = ( 𝐴 𝐷 𝐵 ) ) |