Metamath Proof Explorer


Theorem pstmxmet

Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis pstmval.1 ⊒ ∼ = ( ~Met β€˜ 𝐷 )
Assertion pstmxmet ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( pstoMet β€˜ 𝐷 ) ∈ ( ∞Met β€˜ ( 𝑋 / ∼ ) ) )

Proof

Step Hyp Ref Expression
1 pstmval.1 ⊒ ∼ = ( ~Met β€˜ 𝐷 )
2 eqid ⊒ ( π‘₯ ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ) = ( π‘₯ ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } )
3 vex ⊒ π‘₯ ∈ V
4 vex ⊒ 𝑦 ∈ V
5 3 4 ab2rexex ⊒ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ∈ V
6 5 uniex ⊒ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ∈ V
7 2 6 fnmpoi ⊒ ( π‘₯ ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ) Fn ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) )
8 1 pstmval ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( pstoMet β€˜ 𝐷 ) = ( π‘₯ ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ) )
9 8 fneq1d ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( ( pstoMet β€˜ 𝐷 ) Fn ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ↔ ( π‘₯ ∈ ( 𝑋 / ∼ ) , 𝑦 ∈ ( 𝑋 / ∼ ) ↦ βˆͺ { 𝑧 ∣ βˆƒ π‘Ž ∈ π‘₯ βˆƒ 𝑏 ∈ 𝑦 𝑧 = ( π‘Ž 𝐷 𝑏 ) } ) Fn ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ) )
10 7 9 mpbiri ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( pstoMet β€˜ 𝐷 ) Fn ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) )
11 simpllr ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ π‘₯ = [ π‘Ž ] ∼ )
12 simpr ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ 𝑦 = [ 𝑏 ] ∼ )
13 11 12 oveq12d ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) )
14 simp-5l ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ 𝐷 ∈ ( PsMet β€˜ 𝑋 ) )
15 simp-4r ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ π‘Ž ∈ 𝑋 )
16 simplr ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ 𝑏 ∈ 𝑋 )
17 1 pstmfval ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) β†’ ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( π‘Ž 𝐷 𝑏 ) )
18 14 15 16 17 syl3anc ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( π‘Ž 𝐷 𝑏 ) )
19 13 18 eqtrd ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( π‘Ž 𝐷 𝑏 ) )
20 psmetf ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ 𝐷 : ( 𝑋 Γ— 𝑋 ) ⟢ ℝ* )
21 14 20 syl ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ 𝐷 : ( 𝑋 Γ— 𝑋 ) ⟢ ℝ* )
22 21 15 16 fovcdmd ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘Ž 𝐷 𝑏 ) ∈ ℝ* )
23 19 22 eqeltrd ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ∈ ℝ* )
24 elqsi ⊒ ( 𝑦 ∈ ( 𝑋 / ∼ ) β†’ βˆƒ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ∼ )
25 24 ad2antll ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ βˆƒ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ∼ )
26 25 ad2antrr ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ βˆƒ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ∼ )
27 23 26 r19.29a ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ∈ ℝ* )
28 elqsi ⊒ ( π‘₯ ∈ ( 𝑋 / ∼ ) β†’ βˆƒ π‘Ž ∈ 𝑋 π‘₯ = [ π‘Ž ] ∼ )
29 28 ad2antrl ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ βˆƒ π‘Ž ∈ 𝑋 π‘₯ = [ π‘Ž ] ∼ )
30 27 29 r19.29a ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ∈ ℝ* )
31 30 ralrimivva ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ βˆ€ π‘₯ ∈ ( 𝑋 / ∼ ) βˆ€ 𝑦 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ∈ ℝ* )
32 ffnov ⊒ ( ( pstoMet β€˜ 𝐷 ) : ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ⟢ ℝ* ↔ ( ( pstoMet β€˜ 𝐷 ) Fn ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ∧ βˆ€ π‘₯ ∈ ( 𝑋 / ∼ ) βˆ€ 𝑦 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ∈ ℝ* ) )
33 10 31 32 sylanbrc ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( pstoMet β€˜ 𝐷 ) : ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ⟢ ℝ* )
34 17 3expa ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( π‘Ž 𝐷 𝑏 ) )
35 34 eqeq1d ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ↔ ( π‘Ž 𝐷 𝑏 ) = 0 ) )
36 1 breqi ⊒ ( π‘Ž ∼ 𝑏 ↔ π‘Ž ( ~Met β€˜ 𝐷 ) 𝑏 )
37 metidv ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) β†’ ( π‘Ž ( ~Met β€˜ 𝐷 ) 𝑏 ↔ ( π‘Ž 𝐷 𝑏 ) = 0 ) )
38 37 anassrs ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( π‘Ž ( ~Met β€˜ 𝐷 ) 𝑏 ↔ ( π‘Ž 𝐷 𝑏 ) = 0 ) )
39 36 38 bitrid ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( π‘Ž ∼ 𝑏 ↔ ( π‘Ž 𝐷 𝑏 ) = 0 ) )
40 metider ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( ~Met β€˜ 𝐷 ) Er 𝑋 )
41 40 ad2antrr ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( ~Met β€˜ 𝐷 ) Er 𝑋 )
42 ereq1 ⊒ ( ∼ = ( ~Met β€˜ 𝐷 ) β†’ ( ∼ Er 𝑋 ↔ ( ~Met β€˜ 𝐷 ) Er 𝑋 ) )
43 1 42 ax-mp ⊒ ( ∼ Er 𝑋 ↔ ( ~Met β€˜ 𝐷 ) Er 𝑋 )
44 41 43 sylibr ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ∼ Er 𝑋 )
45 simplr ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ π‘Ž ∈ 𝑋 )
46 44 45 erth ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( π‘Ž ∼ 𝑏 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
47 35 39 46 3bitr2d ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
48 47 adantllr ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
49 48 adantlr ⊒ ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) β†’ ( ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
50 49 adantr ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
51 13 eqeq1d ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = 0 ) )
52 11 12 eqeq12d ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ = 𝑦 ↔ [ π‘Ž ] ∼ = [ 𝑏 ] ∼ ) )
53 50 51 52 3bitr4d ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) )
54 53 26 r19.29a ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) )
55 54 29 r19.29a ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) )
56 simp-6l ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ 𝐷 ∈ ( PsMet β€˜ 𝑋 ) )
57 simplr ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ 𝑐 ∈ 𝑋 )
58 simp-6r ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ π‘Ž ∈ 𝑋 )
59 simp-4r ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ 𝑏 ∈ 𝑋 )
60 psmettri2 ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( 𝑐 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) β†’ ( π‘Ž 𝐷 𝑏 ) ≀ ( ( 𝑐 𝐷 π‘Ž ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) )
61 56 57 58 59 60 syl13anc ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( π‘Ž 𝐷 𝑏 ) ≀ ( ( 𝑐 𝐷 π‘Ž ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) )
62 simp-5r ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ π‘₯ = [ π‘Ž ] ∼ )
63 simpllr ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ 𝑦 = [ 𝑏 ] ∼ )
64 62 63 oveq12d ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) )
65 56 58 59 17 syl3anc ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( [ π‘Ž ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( π‘Ž 𝐷 𝑏 ) )
66 64 65 eqtrd ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( π‘Ž 𝐷 𝑏 ) )
67 simpr ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ 𝑧 = [ 𝑐 ] ∼ )
68 67 62 oveq12d ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) = ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ π‘Ž ] ∼ ) )
69 1 pstmfval ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ∧ π‘Ž ∈ 𝑋 ) β†’ ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ π‘Ž ] ∼ ) = ( 𝑐 𝐷 π‘Ž ) )
70 56 57 58 69 syl3anc ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ π‘Ž ] ∼ ) = ( 𝑐 𝐷 π‘Ž ) )
71 68 70 eqtrd ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) = ( 𝑐 𝐷 π‘Ž ) )
72 67 63 oveq12d ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) )
73 1 pstmfval ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑐 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) β†’ ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( 𝑐 𝐷 𝑏 ) )
74 56 57 59 73 syl3anc ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( [ 𝑐 ] ∼ ( pstoMet β€˜ 𝐷 ) [ 𝑏 ] ∼ ) = ( 𝑐 𝐷 𝑏 ) )
75 72 74 eqtrd ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) = ( 𝑐 𝐷 𝑏 ) )
76 71 75 oveq12d ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) = ( ( 𝑐 𝐷 π‘Ž ) +𝑒 ( 𝑐 𝐷 𝑏 ) ) )
77 61 66 76 3brtr4d ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
78 77 adantl6r ⊒ ( ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) ∧ 𝑐 ∈ 𝑋 ) ∧ 𝑧 = [ 𝑐 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
79 elqsi ⊒ ( 𝑧 ∈ ( 𝑋 / ∼ ) β†’ βˆƒ 𝑐 ∈ 𝑋 𝑧 = [ 𝑐 ] ∼ )
80 79 ad5antlr ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ βˆƒ 𝑐 ∈ 𝑋 𝑧 = [ 𝑐 ] ∼ )
81 78 80 r19.29a ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
82 81 adantl5r ⊒ ( ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) ∧ 𝑏 ∈ 𝑋 ) ∧ 𝑦 = [ 𝑏 ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
83 24 ad4antlr ⊒ ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ βˆƒ 𝑏 ∈ 𝑋 𝑦 = [ 𝑏 ] ∼ )
84 82 83 r19.29a ⊒ ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
85 84 adantl4r ⊒ ( ( ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘₯ ∈ ( 𝑋 / ∼ ) ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) ∧ π‘Ž ∈ 𝑋 ) ∧ π‘₯ = [ π‘Ž ] ∼ ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
86 28 ad3antlr ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘₯ ∈ ( 𝑋 / ∼ ) ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) β†’ βˆƒ π‘Ž ∈ 𝑋 π‘₯ = [ π‘Ž ] ∼ )
87 85 86 r19.29a ⊒ ( ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘₯ ∈ ( 𝑋 / ∼ ) ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ∧ 𝑧 ∈ ( 𝑋 / ∼ ) ) β†’ ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
88 87 ralrimiva ⊒ ( ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ π‘₯ ∈ ( 𝑋 / ∼ ) ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) β†’ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
89 88 anasss ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) )
90 55 89 jca ⊒ ( ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) ∧ ( π‘₯ ∈ ( 𝑋 / ∼ ) ∧ 𝑦 ∈ ( 𝑋 / ∼ ) ) ) β†’ ( ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) ∧ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) ) )
91 90 ralrimivva ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ βˆ€ π‘₯ ∈ ( 𝑋 / ∼ ) βˆ€ 𝑦 ∈ ( 𝑋 / ∼ ) ( ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) ∧ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) ) )
92 elfvex ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ 𝑋 ∈ V )
93 qsexg ⊒ ( 𝑋 ∈ V β†’ ( 𝑋 / ∼ ) ∈ V )
94 isxmet ⊒ ( ( 𝑋 / ∼ ) ∈ V β†’ ( ( pstoMet β€˜ 𝐷 ) ∈ ( ∞Met β€˜ ( 𝑋 / ∼ ) ) ↔ ( ( pstoMet β€˜ 𝐷 ) : ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ⟢ ℝ* ∧ βˆ€ π‘₯ ∈ ( 𝑋 / ∼ ) βˆ€ 𝑦 ∈ ( 𝑋 / ∼ ) ( ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) ∧ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) ) ) ) )
95 92 93 94 3syl ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( ( pstoMet β€˜ 𝐷 ) ∈ ( ∞Met β€˜ ( 𝑋 / ∼ ) ) ↔ ( ( pstoMet β€˜ 𝐷 ) : ( ( 𝑋 / ∼ ) Γ— ( 𝑋 / ∼ ) ) ⟢ ℝ* ∧ βˆ€ π‘₯ ∈ ( 𝑋 / ∼ ) βˆ€ 𝑦 ∈ ( 𝑋 / ∼ ) ( ( ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) ∧ βˆ€ 𝑧 ∈ ( 𝑋 / ∼ ) ( π‘₯ ( pstoMet β€˜ 𝐷 ) 𝑦 ) ≀ ( ( 𝑧 ( pstoMet β€˜ 𝐷 ) π‘₯ ) +𝑒 ( 𝑧 ( pstoMet β€˜ 𝐷 ) 𝑦 ) ) ) ) ) )
96 33 91 95 mpbir2and ⊒ ( 𝐷 ∈ ( PsMet β€˜ 𝑋 ) β†’ ( pstoMet β€˜ 𝐷 ) ∈ ( ∞Met β€˜ ( 𝑋 / ∼ ) ) )