Step |
Hyp |
Ref |
Expression |
1 |
|
pstmval.1 |
β’ βΌ = ( ~Met β π· ) |
2 |
|
eqid |
β’ ( π₯ β ( π / βΌ ) , π¦ β ( π / βΌ ) β¦ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } ) = ( π₯ β ( π / βΌ ) , π¦ β ( π / βΌ ) β¦ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } ) |
3 |
|
vex |
β’ π₯ β V |
4 |
|
vex |
β’ π¦ β V |
5 |
3 4
|
ab2rexex |
β’ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } β V |
6 |
5
|
uniex |
β’ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } β V |
7 |
2 6
|
fnmpoi |
β’ ( π₯ β ( π / βΌ ) , π¦ β ( π / βΌ ) β¦ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } ) Fn ( ( π / βΌ ) Γ ( π / βΌ ) ) |
8 |
1
|
pstmval |
β’ ( π· β ( PsMet β π ) β ( pstoMet β π· ) = ( π₯ β ( π / βΌ ) , π¦ β ( π / βΌ ) β¦ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } ) ) |
9 |
8
|
fneq1d |
β’ ( π· β ( PsMet β π ) β ( ( pstoMet β π· ) Fn ( ( π / βΌ ) Γ ( π / βΌ ) ) β ( π₯ β ( π / βΌ ) , π¦ β ( π / βΌ ) β¦ βͺ { π§ β£ β π β π₯ β π β π¦ π§ = ( π π· π ) } ) Fn ( ( π / βΌ ) Γ ( π / βΌ ) ) ) ) |
10 |
7 9
|
mpbiri |
β’ ( π· β ( PsMet β π ) β ( pstoMet β π· ) Fn ( ( π / βΌ ) Γ ( π / βΌ ) ) ) |
11 |
|
simpllr |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π₯ = [ π ] βΌ ) |
12 |
|
simpr |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π¦ = [ π ] βΌ ) |
13 |
11 12
|
oveq12d |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) = ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) ) |
14 |
|
simp-5l |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π· β ( PsMet β π ) ) |
15 |
|
simp-4r |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π β π ) |
16 |
|
simplr |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π β π ) |
17 |
1
|
pstmfval |
β’ ( ( π· β ( PsMet β π ) β§ π β π β§ π β π ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
18 |
14 15 16 17
|
syl3anc |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
19 |
13 18
|
eqtrd |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) = ( π π· π ) ) |
20 |
|
psmetf |
β’ ( π· β ( PsMet β π ) β π· : ( π Γ π ) βΆ β* ) |
21 |
14 20
|
syl |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β π· : ( π Γ π ) βΆ β* ) |
22 |
21 15 16
|
fovcdmd |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π π· π ) β β* ) |
23 |
19 22
|
eqeltrd |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β β* ) |
24 |
|
elqsi |
β’ ( π¦ β ( π / βΌ ) β β π β π π¦ = [ π ] βΌ ) |
25 |
24
|
ad2antll |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β β π β π π¦ = [ π ] βΌ ) |
26 |
25
|
ad2antrr |
β’ ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β β π β π π¦ = [ π ] βΌ ) |
27 |
23 26
|
r19.29a |
β’ ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β β* ) |
28 |
|
elqsi |
β’ ( π₯ β ( π / βΌ ) β β π β π π₯ = [ π ] βΌ ) |
29 |
28
|
ad2antrl |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β β π β π π₯ = [ π ] βΌ ) |
30 |
27 29
|
r19.29a |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β ( π₯ ( pstoMet β π· ) π¦ ) β β* ) |
31 |
30
|
ralrimivva |
β’ ( π· β ( PsMet β π ) β β π₯ β ( π / βΌ ) β π¦ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β β* ) |
32 |
|
ffnov |
β’ ( ( pstoMet β π· ) : ( ( π / βΌ ) Γ ( π / βΌ ) ) βΆ β* β ( ( pstoMet β π· ) Fn ( ( π / βΌ ) Γ ( π / βΌ ) ) β§ β π₯ β ( π / βΌ ) β π¦ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β β* ) ) |
33 |
10 31 32
|
sylanbrc |
β’ ( π· β ( PsMet β π ) β ( pstoMet β π· ) : ( ( π / βΌ ) Γ ( π / βΌ ) ) βΆ β* ) |
34 |
17
|
3expa |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
35 |
34
|
eqeq1d |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 β ( π π· π ) = 0 ) ) |
36 |
1
|
breqi |
β’ ( π βΌ π β π ( ~Met β π· ) π ) |
37 |
|
metidv |
β’ ( ( π· β ( PsMet β π ) β§ ( π β π β§ π β π ) ) β ( π ( ~Met β π· ) π β ( π π· π ) = 0 ) ) |
38 |
37
|
anassrs |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( π ( ~Met β π· ) π β ( π π· π ) = 0 ) ) |
39 |
36 38
|
bitrid |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( π βΌ π β ( π π· π ) = 0 ) ) |
40 |
|
metider |
β’ ( π· β ( PsMet β π ) β ( ~Met β π· ) Er π ) |
41 |
40
|
ad2antrr |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( ~Met β π· ) Er π ) |
42 |
|
ereq1 |
β’ ( βΌ = ( ~Met β π· ) β ( βΌ Er π β ( ~Met β π· ) Er π ) ) |
43 |
1 42
|
ax-mp |
β’ ( βΌ Er π β ( ~Met β π· ) Er π ) |
44 |
41 43
|
sylibr |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β βΌ Er π ) |
45 |
|
simplr |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β π β π ) |
46 |
44 45
|
erth |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( π βΌ π β [ π ] βΌ = [ π ] βΌ ) ) |
47 |
35 39 46
|
3bitr2d |
β’ ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π β π ) β ( ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 β [ π ] βΌ = [ π ] βΌ ) ) |
48 |
47
|
adantllr |
β’ ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π β π ) β ( ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 β [ π ] βΌ = [ π ] βΌ ) ) |
49 |
48
|
adantlr |
β’ ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β ( ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 β [ π ] βΌ = [ π ] βΌ ) ) |
50 |
49
|
adantr |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 β [ π ] βΌ = [ π ] βΌ ) ) |
51 |
13
|
eqeq1d |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = 0 ) ) |
52 |
11 12
|
eqeq12d |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ = π¦ β [ π ] βΌ = [ π ] βΌ ) ) |
53 |
50 51 52
|
3bitr4d |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) ) |
54 |
53 26
|
r19.29a |
β’ ( ( ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) ) |
55 |
54 29
|
r19.29a |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) ) |
56 |
|
simp-6l |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π· β ( PsMet β π ) ) |
57 |
|
simplr |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π β π ) |
58 |
|
simp-6r |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π β π ) |
59 |
|
simp-4r |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π β π ) |
60 |
|
psmettri2 |
β’ ( ( π· β ( PsMet β π ) β§ ( π β π β§ π β π β§ π β π ) ) β ( π π· π ) β€ ( ( π π· π ) +π ( π π· π ) ) ) |
61 |
56 57 58 59 60
|
syl13anc |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π π· π ) β€ ( ( π π· π ) +π ( π π· π ) ) ) |
62 |
|
simp-5r |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π₯ = [ π ] βΌ ) |
63 |
|
simpllr |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π¦ = [ π ] βΌ ) |
64 |
62 63
|
oveq12d |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) = ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) ) |
65 |
56 58 59 17
|
syl3anc |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
66 |
64 65
|
eqtrd |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) = ( π π· π ) ) |
67 |
|
simpr |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β π§ = [ π ] βΌ ) |
68 |
67 62
|
oveq12d |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π§ ( pstoMet β π· ) π₯ ) = ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) ) |
69 |
1
|
pstmfval |
β’ ( ( π· β ( PsMet β π ) β§ π β π β§ π β π ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
70 |
56 57 58 69
|
syl3anc |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
71 |
68 70
|
eqtrd |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π§ ( pstoMet β π· ) π₯ ) = ( π π· π ) ) |
72 |
67 63
|
oveq12d |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π§ ( pstoMet β π· ) π¦ ) = ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) ) |
73 |
1
|
pstmfval |
β’ ( ( π· β ( PsMet β π ) β§ π β π β§ π β π ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
74 |
56 57 59 73
|
syl3anc |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( [ π ] βΌ ( pstoMet β π· ) [ π ] βΌ ) = ( π π· π ) ) |
75 |
72 74
|
eqtrd |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π§ ( pstoMet β π· ) π¦ ) = ( π π· π ) ) |
76 |
71 75
|
oveq12d |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) = ( ( π π· π ) +π ( π π· π ) ) ) |
77 |
61 66 76
|
3brtr4d |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
78 |
77
|
adantl6r |
β’ ( ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β§ π β π ) β§ π§ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
79 |
|
elqsi |
β’ ( π§ β ( π / βΌ ) β β π β π π§ = [ π ] βΌ ) |
80 |
79
|
ad5antlr |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β β π β π π§ = [ π ] βΌ ) |
81 |
78 80
|
r19.29a |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
82 |
81
|
adantl5r |
β’ ( ( ( ( ( ( ( π· β ( PsMet β π ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β§ π β π ) β§ π¦ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
83 |
24
|
ad4antlr |
β’ ( ( ( ( ( π· β ( PsMet β π ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β β π β π π¦ = [ π ] βΌ ) |
84 |
82 83
|
r19.29a |
β’ ( ( ( ( ( π· β ( PsMet β π ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
85 |
84
|
adantl4r |
β’ ( ( ( ( ( ( π· β ( PsMet β π ) β§ π₯ β ( π / βΌ ) ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β§ π β π ) β§ π₯ = [ π ] βΌ ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
86 |
28
|
ad3antlr |
β’ ( ( ( ( π· β ( PsMet β π ) β§ π₯ β ( π / βΌ ) ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β β π β π π₯ = [ π ] βΌ ) |
87 |
85 86
|
r19.29a |
β’ ( ( ( ( π· β ( PsMet β π ) β§ π₯ β ( π / βΌ ) ) β§ π¦ β ( π / βΌ ) ) β§ π§ β ( π / βΌ ) ) β ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
88 |
87
|
ralrimiva |
β’ ( ( ( π· β ( PsMet β π ) β§ π₯ β ( π / βΌ ) ) β§ π¦ β ( π / βΌ ) ) β β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
89 |
88
|
anasss |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) |
90 |
55 89
|
jca |
β’ ( ( π· β ( PsMet β π ) β§ ( π₯ β ( π / βΌ ) β§ π¦ β ( π / βΌ ) ) ) β ( ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) ) |
91 |
90
|
ralrimivva |
β’ ( π· β ( PsMet β π ) β β π₯ β ( π / βΌ ) β π¦ β ( π / βΌ ) ( ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) ) |
92 |
|
elfvex |
β’ ( π· β ( PsMet β π ) β π β V ) |
93 |
|
qsexg |
β’ ( π β V β ( π / βΌ ) β V ) |
94 |
|
isxmet |
β’ ( ( π / βΌ ) β V β ( ( pstoMet β π· ) β ( βMet β ( π / βΌ ) ) β ( ( pstoMet β π· ) : ( ( π / βΌ ) Γ ( π / βΌ ) ) βΆ β* β§ β π₯ β ( π / βΌ ) β π¦ β ( π / βΌ ) ( ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) ) ) ) |
95 |
92 93 94
|
3syl |
β’ ( π· β ( PsMet β π ) β ( ( pstoMet β π· ) β ( βMet β ( π / βΌ ) ) β ( ( pstoMet β π· ) : ( ( π / βΌ ) Γ ( π / βΌ ) ) βΆ β* β§ β π₯ β ( π / βΌ ) β π¦ β ( π / βΌ ) ( ( ( π₯ ( pstoMet β π· ) π¦ ) = 0 β π₯ = π¦ ) β§ β π§ β ( π / βΌ ) ( π₯ ( pstoMet β π· ) π¦ ) β€ ( ( π§ ( pstoMet β π· ) π₯ ) +π ( π§ ( pstoMet β π· ) π¦ ) ) ) ) ) ) |
96 |
33 91 95
|
mpbir2and |
β’ ( π· β ( PsMet β π ) β ( pstoMet β π· ) β ( βMet β ( π / βΌ ) ) ) |