Step |
Hyp |
Ref |
Expression |
1 |
|
pstmval.1 |
|- .~ = ( ~Met ` D ) |
2 |
|
eqid |
|- ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) = ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) |
3 |
|
vex |
|- x e. _V |
4 |
|
vex |
|- y e. _V |
5 |
3 4
|
ab2rexex |
|- { z | E. a e. x E. b e. y z = ( a D b ) } e. _V |
6 |
5
|
uniex |
|- U. { z | E. a e. x E. b e. y z = ( a D b ) } e. _V |
7 |
2 6
|
fnmpoi |
|- ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) |
8 |
1
|
pstmval |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) = ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) ) |
9 |
8
|
fneq1d |
|- ( D e. ( PsMet ` X ) -> ( ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) <-> ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) ) ) |
10 |
7 9
|
mpbiri |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) ) |
11 |
|
simpllr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> x = [ a ] .~ ) |
12 |
|
simpr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> y = [ b ] .~ ) |
13 |
11 12
|
oveq12d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
14 |
|
simp-5l |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> D e. ( PsMet ` X ) ) |
15 |
|
simp-4r |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> a e. X ) |
16 |
|
simplr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> b e. X ) |
17 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ a e. X /\ b e. X ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
19 |
13 18
|
eqtrd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( a D b ) ) |
20 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
21 |
14 20
|
syl |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> D : ( X X. X ) --> RR* ) |
22 |
21 15 16
|
fovrnd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( a D b ) e. RR* ) |
23 |
19 22
|
eqeltrd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
24 |
|
elqsi |
|- ( y e. ( X /. .~ ) -> E. b e. X y = [ b ] .~ ) |
25 |
24
|
ad2antll |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> E. b e. X y = [ b ] .~ ) |
26 |
25
|
ad2antrr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> E. b e. X y = [ b ] .~ ) |
27 |
23 26
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
28 |
|
elqsi |
|- ( x e. ( X /. .~ ) -> E. a e. X x = [ a ] .~ ) |
29 |
28
|
ad2antrl |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> E. a e. X x = [ a ] .~ ) |
30 |
27 29
|
r19.29a |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
31 |
30
|
ralrimivva |
|- ( D e. ( PsMet ` X ) -> A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) e. RR* ) |
32 |
|
ffnov |
|- ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* <-> ( ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) e. RR* ) ) |
33 |
10 31 32
|
sylanbrc |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* ) |
34 |
17
|
3expa |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
35 |
34
|
eqeq1d |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> ( a D b ) = 0 ) ) |
36 |
1
|
breqi |
|- ( a .~ b <-> a ( ~Met ` D ) b ) |
37 |
|
metidv |
|- ( ( D e. ( PsMet ` X ) /\ ( a e. X /\ b e. X ) ) -> ( a ( ~Met ` D ) b <-> ( a D b ) = 0 ) ) |
38 |
37
|
anassrs |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a ( ~Met ` D ) b <-> ( a D b ) = 0 ) ) |
39 |
36 38
|
syl5bb |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a .~ b <-> ( a D b ) = 0 ) ) |
40 |
|
metider |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) Er X ) |
41 |
40
|
ad2antrr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ~Met ` D ) Er X ) |
42 |
|
ereq1 |
|- ( .~ = ( ~Met ` D ) -> ( .~ Er X <-> ( ~Met ` D ) Er X ) ) |
43 |
1 42
|
ax-mp |
|- ( .~ Er X <-> ( ~Met ` D ) Er X ) |
44 |
41 43
|
sylibr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> .~ Er X ) |
45 |
|
simplr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> a e. X ) |
46 |
44 45
|
erth |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a .~ b <-> [ a ] .~ = [ b ] .~ ) ) |
47 |
35 39 46
|
3bitr2d |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
48 |
47
|
adantllr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
49 |
48
|
adantlr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
50 |
49
|
adantr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
51 |
13
|
eqeq1d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 ) ) |
52 |
11 12
|
eqeq12d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x = y <-> [ a ] .~ = [ b ] .~ ) ) |
53 |
50 51 52
|
3bitr4d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
54 |
53 26
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
55 |
54 29
|
r19.29a |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
56 |
|
simp-6l |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> D e. ( PsMet ` X ) ) |
57 |
|
simplr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> c e. X ) |
58 |
|
simp-6r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> a e. X ) |
59 |
|
simp-4r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> b e. X ) |
60 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( c e. X /\ a e. X /\ b e. X ) ) -> ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) |
61 |
56 57 58 59 60
|
syl13anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) |
62 |
|
simp-5r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> x = [ a ] .~ ) |
63 |
|
simpllr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> y = [ b ] .~ ) |
64 |
62 63
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
65 |
56 58 59 17
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
66 |
64 65
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( a D b ) ) |
67 |
|
simpr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> z = [ c ] .~ ) |
68 |
67 62
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) x ) = ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) ) |
69 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ c e. X /\ a e. X ) -> ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) = ( c D a ) ) |
70 |
56 57 58 69
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) = ( c D a ) ) |
71 |
68 70
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) x ) = ( c D a ) ) |
72 |
67 63
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) y ) = ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
73 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ c e. X /\ b e. X ) -> ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( c D b ) ) |
74 |
56 57 59 73
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( c D b ) ) |
75 |
72 74
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) y ) = ( c D b ) ) |
76 |
71 75
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) = ( ( c D a ) +e ( c D b ) ) ) |
77 |
61 66 76
|
3brtr4d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
78 |
77
|
adantl6r |
|- ( ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
79 |
|
elqsi |
|- ( z e. ( X /. .~ ) -> E. c e. X z = [ c ] .~ ) |
80 |
79
|
ad5antlr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> E. c e. X z = [ c ] .~ ) |
81 |
78 80
|
r19.29a |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
82 |
81
|
adantl5r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
83 |
24
|
ad4antlr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> E. b e. X y = [ b ] .~ ) |
84 |
82 83
|
r19.29a |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
85 |
84
|
adantl4r |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
86 |
28
|
ad3antlr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) -> E. a e. X x = [ a ] .~ ) |
87 |
85 86
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
88 |
87
|
ralrimiva |
|- ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) -> A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
89 |
88
|
anasss |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
90 |
55 89
|
jca |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) |
91 |
90
|
ralrimivva |
|- ( D e. ( PsMet ` X ) -> A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) |
92 |
|
elfvex |
|- ( D e. ( PsMet ` X ) -> X e. _V ) |
93 |
|
qsexg |
|- ( X e. _V -> ( X /. .~ ) e. _V ) |
94 |
|
isxmet |
|- ( ( X /. .~ ) e. _V -> ( ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) <-> ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) ) ) |
95 |
92 93 94
|
3syl |
|- ( D e. ( PsMet ` X ) -> ( ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) <-> ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) ) ) |
96 |
33 91 95
|
mpbir2and |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) ) |