| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pstmval.1 |
|- .~ = ( ~Met ` D ) |
| 2 |
|
eqid |
|- ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) = ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) |
| 3 |
|
vex |
|- x e. _V |
| 4 |
|
vex |
|- y e. _V |
| 5 |
3 4
|
ab2rexex |
|- { z | E. a e. x E. b e. y z = ( a D b ) } e. _V |
| 6 |
5
|
uniex |
|- U. { z | E. a e. x E. b e. y z = ( a D b ) } e. _V |
| 7 |
2 6
|
fnmpoi |
|- ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) |
| 8 |
1
|
pstmval |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) = ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) ) |
| 9 |
8
|
fneq1d |
|- ( D e. ( PsMet ` X ) -> ( ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) <-> ( x e. ( X /. .~ ) , y e. ( X /. .~ ) |-> U. { z | E. a e. x E. b e. y z = ( a D b ) } ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) ) ) |
| 10 |
7 9
|
mpbiri |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) ) |
| 11 |
|
simpllr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> x = [ a ] .~ ) |
| 12 |
|
simpr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> y = [ b ] .~ ) |
| 13 |
11 12
|
oveq12d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
| 14 |
|
simp-5l |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> D e. ( PsMet ` X ) ) |
| 15 |
|
simp-4r |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> a e. X ) |
| 16 |
|
simplr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> b e. X ) |
| 17 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ a e. X /\ b e. X ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
| 18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
| 19 |
13 18
|
eqtrd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( a D b ) ) |
| 20 |
|
psmetf |
|- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
| 21 |
14 20
|
syl |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> D : ( X X. X ) --> RR* ) |
| 22 |
21 15 16
|
fovcdmd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( a D b ) e. RR* ) |
| 23 |
19 22
|
eqeltrd |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
| 24 |
|
elqsi |
|- ( y e. ( X /. .~ ) -> E. b e. X y = [ b ] .~ ) |
| 25 |
24
|
ad2antll |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> E. b e. X y = [ b ] .~ ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> E. b e. X y = [ b ] .~ ) |
| 27 |
23 26
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
| 28 |
|
elqsi |
|- ( x e. ( X /. .~ ) -> E. a e. X x = [ a ] .~ ) |
| 29 |
28
|
ad2antrl |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> E. a e. X x = [ a ] .~ ) |
| 30 |
27 29
|
r19.29a |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( x ( pstoMet ` D ) y ) e. RR* ) |
| 31 |
30
|
ralrimivva |
|- ( D e. ( PsMet ` X ) -> A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) e. RR* ) |
| 32 |
|
ffnov |
|- ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* <-> ( ( pstoMet ` D ) Fn ( ( X /. .~ ) X. ( X /. .~ ) ) /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) e. RR* ) ) |
| 33 |
10 31 32
|
sylanbrc |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* ) |
| 34 |
17
|
3expa |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
| 35 |
34
|
eqeq1d |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> ( a D b ) = 0 ) ) |
| 36 |
1
|
breqi |
|- ( a .~ b <-> a ( ~Met ` D ) b ) |
| 37 |
|
metidv |
|- ( ( D e. ( PsMet ` X ) /\ ( a e. X /\ b e. X ) ) -> ( a ( ~Met ` D ) b <-> ( a D b ) = 0 ) ) |
| 38 |
37
|
anassrs |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a ( ~Met ` D ) b <-> ( a D b ) = 0 ) ) |
| 39 |
36 38
|
bitrid |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a .~ b <-> ( a D b ) = 0 ) ) |
| 40 |
|
metider |
|- ( D e. ( PsMet ` X ) -> ( ~Met ` D ) Er X ) |
| 41 |
40
|
ad2antrr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ~Met ` D ) Er X ) |
| 42 |
|
ereq1 |
|- ( .~ = ( ~Met ` D ) -> ( .~ Er X <-> ( ~Met ` D ) Er X ) ) |
| 43 |
1 42
|
ax-mp |
|- ( .~ Er X <-> ( ~Met ` D ) Er X ) |
| 44 |
41 43
|
sylibr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> .~ Er X ) |
| 45 |
|
simplr |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> a e. X ) |
| 46 |
44 45
|
erth |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( a .~ b <-> [ a ] .~ = [ b ] .~ ) ) |
| 47 |
35 39 46
|
3bitr2d |
|- ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
| 48 |
47
|
adantllr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
| 49 |
48
|
adantlr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
| 50 |
49
|
adantr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 <-> [ a ] .~ = [ b ] .~ ) ) |
| 51 |
13
|
eqeq1d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = 0 ) ) |
| 52 |
11 12
|
eqeq12d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x = y <-> [ a ] .~ = [ b ] .~ ) ) |
| 53 |
50 51 52
|
3bitr4d |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
| 54 |
53 26
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
| 55 |
54 29
|
r19.29a |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) ) |
| 56 |
|
simp-6l |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> D e. ( PsMet ` X ) ) |
| 57 |
|
simplr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> c e. X ) |
| 58 |
|
simp-6r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> a e. X ) |
| 59 |
|
simp-4r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> b e. X ) |
| 60 |
|
psmettri2 |
|- ( ( D e. ( PsMet ` X ) /\ ( c e. X /\ a e. X /\ b e. X ) ) -> ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) |
| 61 |
56 57 58 59 60
|
syl13anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( a D b ) <_ ( ( c D a ) +e ( c D b ) ) ) |
| 62 |
|
simp-5r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> x = [ a ] .~ ) |
| 63 |
|
simpllr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> y = [ b ] .~ ) |
| 64 |
62 63
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
| 65 |
56 58 59 17
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ a ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( a D b ) ) |
| 66 |
64 65
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) = ( a D b ) ) |
| 67 |
|
simpr |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> z = [ c ] .~ ) |
| 68 |
67 62
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) x ) = ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) ) |
| 69 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ c e. X /\ a e. X ) -> ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) = ( c D a ) ) |
| 70 |
56 57 58 69
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ c ] .~ ( pstoMet ` D ) [ a ] .~ ) = ( c D a ) ) |
| 71 |
68 70
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) x ) = ( c D a ) ) |
| 72 |
67 63
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) y ) = ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) ) |
| 73 |
1
|
pstmfval |
|- ( ( D e. ( PsMet ` X ) /\ c e. X /\ b e. X ) -> ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( c D b ) ) |
| 74 |
56 57 59 73
|
syl3anc |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( [ c ] .~ ( pstoMet ` D ) [ b ] .~ ) = ( c D b ) ) |
| 75 |
72 74
|
eqtrd |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( z ( pstoMet ` D ) y ) = ( c D b ) ) |
| 76 |
71 75
|
oveq12d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) = ( ( c D a ) +e ( c D b ) ) ) |
| 77 |
61 66 76
|
3brtr4d |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 78 |
77
|
adantl6r |
|- ( ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) /\ c e. X ) /\ z = [ c ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 79 |
|
elqsi |
|- ( z e. ( X /. .~ ) -> E. c e. X z = [ c ] .~ ) |
| 80 |
79
|
ad5antlr |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> E. c e. X z = [ c ] .~ ) |
| 81 |
78 80
|
r19.29a |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 82 |
81
|
adantl5r |
|- ( ( ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) /\ b e. X ) /\ y = [ b ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 83 |
24
|
ad4antlr |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> E. b e. X y = [ b ] .~ ) |
| 84 |
82 83
|
r19.29a |
|- ( ( ( ( ( D e. ( PsMet ` X ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 85 |
84
|
adantl4r |
|- ( ( ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) /\ a e. X ) /\ x = [ a ] .~ ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 86 |
28
|
ad3antlr |
|- ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) -> E. a e. X x = [ a ] .~ ) |
| 87 |
85 86
|
r19.29a |
|- ( ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) /\ z e. ( X /. .~ ) ) -> ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 88 |
87
|
ralrimiva |
|- ( ( ( D e. ( PsMet ` X ) /\ x e. ( X /. .~ ) ) /\ y e. ( X /. .~ ) ) -> A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 89 |
88
|
anasss |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) |
| 90 |
55 89
|
jca |
|- ( ( D e. ( PsMet ` X ) /\ ( x e. ( X /. .~ ) /\ y e. ( X /. .~ ) ) ) -> ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) |
| 91 |
90
|
ralrimivva |
|- ( D e. ( PsMet ` X ) -> A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) |
| 92 |
|
elfvex |
|- ( D e. ( PsMet ` X ) -> X e. _V ) |
| 93 |
|
qsexg |
|- ( X e. _V -> ( X /. .~ ) e. _V ) |
| 94 |
|
isxmet |
|- ( ( X /. .~ ) e. _V -> ( ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) <-> ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) ) ) |
| 95 |
92 93 94
|
3syl |
|- ( D e. ( PsMet ` X ) -> ( ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) <-> ( ( pstoMet ` D ) : ( ( X /. .~ ) X. ( X /. .~ ) ) --> RR* /\ A. x e. ( X /. .~ ) A. y e. ( X /. .~ ) ( ( ( x ( pstoMet ` D ) y ) = 0 <-> x = y ) /\ A. z e. ( X /. .~ ) ( x ( pstoMet ` D ) y ) <_ ( ( z ( pstoMet ` D ) x ) +e ( z ( pstoMet ` D ) y ) ) ) ) ) ) |
| 96 |
33 91 95
|
mpbir2and |
|- ( D e. ( PsMet ` X ) -> ( pstoMet ` D ) e. ( *Met ` ( X /. .~ ) ) ) |