| Step |
Hyp |
Ref |
Expression |
| 1 |
|
metidss |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 2 |
|
xpss |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) |
| 3 |
1 2
|
sstrdi |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) ⊆ ( V × V ) ) |
| 4 |
|
df-rel |
⊢ ( Rel ( ~Met ‘ 𝐷 ) ↔ ( ~Met ‘ 𝐷 ) ⊆ ( V × V ) ) |
| 5 |
3 4
|
sylibr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → Rel ( ~Met ‘ 𝐷 ) ) |
| 6 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) ) |
| 7 |
6
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) |
| 8 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 10 |
|
psmetsym |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 11 |
10
|
3expb |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
| 13 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
| 14 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
| 15 |
14
|
ancom2s |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
| 16 |
12 13 15
|
3bitr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
| 17 |
16
|
biimpd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
| 18 |
17
|
impancom |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
| 19 |
9 18
|
mpd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) |
| 20 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
| 21 |
|
simprr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) |
| 22 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 → 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ) ) |
| 23 |
22
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) → 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ) |
| 24 |
|
brxp |
⊢ ( 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
| 25 |
23 24
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
| 26 |
21 25
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
| 27 |
26
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
| 28 |
|
simprl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) |
| 29 |
28 9
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 30 |
29
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
| 31 |
26
|
simprd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
| 32 |
|
psmettri2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
| 33 |
20 27 30 31 32
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
| 34 |
29 11
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 35 |
29 13
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
| 36 |
28 35
|
mpbid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) = 0 ) |
| 37 |
34 36
|
eqtr3d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 𝐷 𝑥 ) = 0 ) |
| 38 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑦 𝐷 𝑧 ) = 0 ) ) |
| 39 |
26 38
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑦 𝐷 𝑧 ) = 0 ) ) |
| 40 |
21 39
|
mpbid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 𝐷 𝑧 ) = 0 ) |
| 41 |
37 40
|
oveq12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = ( 0 +𝑒 0 ) ) |
| 42 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 43 |
|
xaddrid |
⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) |
| 44 |
42 43
|
ax-mp |
⊢ ( 0 +𝑒 0 ) = 0 |
| 45 |
41 44
|
eqtrdi |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = 0 ) |
| 46 |
33 45
|
breqtrd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ 0 ) |
| 47 |
|
psmetge0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑧 ) ) |
| 48 |
20 30 31 47
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 0 ≤ ( 𝑥 𝐷 𝑧 ) ) |
| 49 |
|
psmetcl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ) |
| 50 |
20 30 31 49
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ) |
| 51 |
|
xrletri3 |
⊢ ( ( ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑧 ) = 0 ↔ ( ( 𝑥 𝐷 𝑧 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑧 ) ) ) ) |
| 52 |
50 42 51
|
sylancl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑥 𝐷 𝑧 ) = 0 ↔ ( ( 𝑥 𝐷 𝑧 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑧 ) ) ) ) |
| 53 |
46 48 52
|
mpbir2and |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) = 0 ) |
| 54 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑥 𝐷 𝑧 ) = 0 ) ) |
| 55 |
20 30 31 54
|
syl12anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑥 𝐷 𝑧 ) = 0 ) ) |
| 56 |
53 55
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ) |
| 57 |
|
psmet0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) = 0 ) |
| 58 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑥 𝐷 𝑥 ) = 0 ) ) |
| 59 |
58
|
anabsan2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑥 𝐷 𝑥 ) = 0 ) ) |
| 60 |
57 59
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) |
| 61 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 → 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ) ) |
| 62 |
61
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ) |
| 63 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
| 64 |
62 63
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
| 65 |
64
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
| 66 |
60 65
|
impbida |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
| 67 |
5 19 56 66
|
iserd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) Er 𝑋 ) |