Step |
Hyp |
Ref |
Expression |
1 |
|
metidss |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) ⊆ ( 𝑋 × 𝑋 ) ) |
2 |
|
xpss |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( V × V ) |
3 |
1 2
|
sstrdi |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) ⊆ ( V × V ) ) |
4 |
|
df-rel |
⊢ ( Rel ( ~Met ‘ 𝐷 ) ↔ ( ~Met ‘ 𝐷 ) ⊆ ( V × V ) ) |
5 |
3 4
|
sylibr |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → Rel ( ~Met ‘ 𝐷 ) ) |
6 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) ) |
7 |
6
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ) |
8 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
10 |
|
psmetsym |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
12 |
11
|
eqeq1d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 𝐷 𝑦 ) = 0 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
13 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
14 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
15 |
14
|
ancom2s |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑦 𝐷 𝑥 ) = 0 ) ) |
16 |
12 13 15
|
3bitr4d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
17 |
16
|
biimpd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
18 |
17
|
impancom |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
19 |
9 18
|
mpd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) |
20 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
21 |
|
simprr |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) |
22 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 → 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ) ) |
23 |
22
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) → 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ) |
24 |
|
brxp |
⊢ ( 𝑦 ( 𝑋 × 𝑋 ) 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
25 |
23 24
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
26 |
21 25
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) |
27 |
26
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
28 |
|
simprl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) |
29 |
28 9
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
30 |
29
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
31 |
26
|
simprd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
32 |
|
psmettri2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
33 |
20 27 30 31 32
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
34 |
29 11
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
35 |
29 13
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ↔ ( 𝑥 𝐷 𝑦 ) = 0 ) ) |
36 |
28 35
|
mpbid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) = 0 ) |
37 |
34 36
|
eqtr3d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 𝐷 𝑥 ) = 0 ) |
38 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑦 𝐷 𝑧 ) = 0 ) ) |
39 |
26 38
|
syldan |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑦 𝐷 𝑧 ) = 0 ) ) |
40 |
21 39
|
mpbid |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑦 𝐷 𝑧 ) = 0 ) |
41 |
37 40
|
oveq12d |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = ( 0 +𝑒 0 ) ) |
42 |
|
0xr |
⊢ 0 ∈ ℝ* |
43 |
|
xaddid1 |
⊢ ( 0 ∈ ℝ* → ( 0 +𝑒 0 ) = 0 ) |
44 |
42 43
|
ax-mp |
⊢ ( 0 +𝑒 0 ) = 0 |
45 |
41 44
|
eqtrdi |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑦 𝐷 𝑥 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = 0 ) |
46 |
33 45
|
breqtrd |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ 0 ) |
47 |
|
psmetge0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → 0 ≤ ( 𝑥 𝐷 𝑧 ) ) |
48 |
20 30 31 47
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 0 ≤ ( 𝑥 𝐷 𝑧 ) ) |
49 |
|
psmetcl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ) |
50 |
20 30 31 49
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ) |
51 |
|
xrletri3 |
⊢ ( ( ( 𝑥 𝐷 𝑧 ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( 𝑥 𝐷 𝑧 ) = 0 ↔ ( ( 𝑥 𝐷 𝑧 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑧 ) ) ) ) |
52 |
50 42 51
|
sylancl |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( ( 𝑥 𝐷 𝑧 ) = 0 ↔ ( ( 𝑥 𝐷 𝑧 ) ≤ 0 ∧ 0 ≤ ( 𝑥 𝐷 𝑧 ) ) ) ) |
53 |
46 48 52
|
mpbir2and |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) = 0 ) |
54 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑥 𝐷 𝑧 ) = 0 ) ) |
55 |
20 30 31 54
|
syl12anc |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ↔ ( 𝑥 𝐷 𝑧 ) = 0 ) ) |
56 |
53 55
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ∧ 𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ) |
57 |
|
psmet0 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) = 0 ) |
58 |
|
metidv |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑥 𝐷 𝑥 ) = 0 ) ) |
59 |
58
|
anabsan2 |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ↔ ( 𝑥 𝐷 𝑥 ) = 0 ) ) |
60 |
57 59
|
mpbird |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) |
61 |
1
|
ssbrd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 → 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ) ) |
62 |
61
|
imp |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ) |
63 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × 𝑋 ) 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
64 |
62 63
|
sylib |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) |
65 |
64
|
simpld |
⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
66 |
60 65
|
impbida |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) ) |
67 |
5 19 56 66
|
iserd |
⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ~Met ‘ 𝐷 ) Er 𝑋 ) |