| Step | Hyp | Ref | Expression | 
						
							| 1 |  | metidss | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ~Met ‘ 𝐷 )  ⊆  ( 𝑋  ×  𝑋 ) ) | 
						
							| 2 |  | xpss | ⊢ ( 𝑋  ×  𝑋 )  ⊆  ( V  ×  V ) | 
						
							| 3 | 1 2 | sstrdi | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ~Met ‘ 𝐷 )  ⊆  ( V  ×  V ) ) | 
						
							| 4 |  | df-rel | ⊢ ( Rel  ( ~Met ‘ 𝐷 )  ↔  ( ~Met ‘ 𝐷 )  ⊆  ( V  ×  V ) ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  Rel  ( ~Met ‘ 𝐷 ) ) | 
						
							| 6 | 1 | ssbrd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  →  𝑥 ( 𝑋  ×  𝑋 ) 𝑦 ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑦 )  →  𝑥 ( 𝑋  ×  𝑋 ) 𝑦 ) | 
						
							| 8 |  | brxp | ⊢ ( 𝑥 ( 𝑋  ×  𝑋 ) 𝑦  ↔  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑦 )  →  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) | 
						
							| 10 |  | psmetsym | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 11 | 10 | 3expb | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 𝐷 𝑦 )  =  0  ↔  ( 𝑦 𝐷 𝑥 )  =  0 ) ) | 
						
							| 13 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ↔  ( 𝑥 𝐷 𝑦 )  =  0 ) ) | 
						
							| 14 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥  ↔  ( 𝑦 𝐷 𝑥 )  =  0 ) ) | 
						
							| 15 | 14 | ancom2s | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑥  ↔  ( 𝑦 𝐷 𝑥 )  =  0 ) ) | 
						
							| 16 | 12 13 15 | 3bitr4d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ↔  𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 17 | 16 | biimpd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  →  𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 18 | 17 | impancom | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑦 )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 19 | 9 18 | mpd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑦 )  →  𝑦 ( ~Met ‘ 𝐷 ) 𝑥 ) | 
						
							| 20 |  | simpl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝐷  ∈  ( PsMet ‘ 𝑋 ) ) | 
						
							| 21 |  | simprr | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) | 
						
							| 22 | 1 | ssbrd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧  →  𝑦 ( 𝑋  ×  𝑋 ) 𝑧 ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 )  →  𝑦 ( 𝑋  ×  𝑋 ) 𝑧 ) | 
						
							| 24 |  | brxp | ⊢ ( 𝑦 ( 𝑋  ×  𝑋 ) 𝑧  ↔  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) ) | 
						
							| 25 | 23 24 | sylib | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 )  →  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) ) | 
						
							| 26 | 21 25 | syldan | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) ) | 
						
							| 27 | 26 | simpld | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑦  ∈  𝑋 ) | 
						
							| 28 |  | simprl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑥 ( ~Met ‘ 𝐷 ) 𝑦 ) | 
						
							| 29 | 28 9 | syldan | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) | 
						
							| 30 | 29 | simpld | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 31 | 26 | simprd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑧  ∈  𝑋 ) | 
						
							| 32 |  | psmettri2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑥 𝐷 𝑧 )  ≤  ( ( 𝑦 𝐷 𝑥 )  +𝑒  ( 𝑦 𝐷 𝑧 ) ) ) | 
						
							| 33 | 20 27 30 31 32 | syl13anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑧 )  ≤  ( ( 𝑦 𝐷 𝑥 )  +𝑒  ( 𝑦 𝐷 𝑧 ) ) ) | 
						
							| 34 | 29 11 | syldan | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑦 )  =  ( 𝑦 𝐷 𝑥 ) ) | 
						
							| 35 | 29 13 | syldan | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ↔  ( 𝑥 𝐷 𝑦 )  =  0 ) ) | 
						
							| 36 | 28 35 | mpbid | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑦 )  =  0 ) | 
						
							| 37 | 34 36 | eqtr3d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑦 𝐷 𝑥 )  =  0 ) | 
						
							| 38 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧  ↔  ( 𝑦 𝐷 𝑧 )  =  0 ) ) | 
						
							| 39 | 26 38 | syldan | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑦 ( ~Met ‘ 𝐷 ) 𝑧  ↔  ( 𝑦 𝐷 𝑧 )  =  0 ) ) | 
						
							| 40 | 21 39 | mpbid | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑦 𝐷 𝑧 )  =  0 ) | 
						
							| 41 | 37 40 | oveq12d | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( ( 𝑦 𝐷 𝑥 )  +𝑒  ( 𝑦 𝐷 𝑧 ) )  =  ( 0  +𝑒  0 ) ) | 
						
							| 42 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 43 |  | xaddrid | ⊢ ( 0  ∈  ℝ*  →  ( 0  +𝑒  0 )  =  0 ) | 
						
							| 44 | 42 43 | ax-mp | ⊢ ( 0  +𝑒  0 )  =  0 | 
						
							| 45 | 41 44 | eqtrdi | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( ( 𝑦 𝐷 𝑥 )  +𝑒  ( 𝑦 𝐷 𝑧 ) )  =  0 ) | 
						
							| 46 | 33 45 | breqtrd | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑧 )  ≤  0 ) | 
						
							| 47 |  | psmetge0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  0  ≤  ( 𝑥 𝐷 𝑧 ) ) | 
						
							| 48 | 20 30 31 47 | syl3anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  0  ≤  ( 𝑥 𝐷 𝑧 ) ) | 
						
							| 49 |  | psmetcl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑧 )  ∈  ℝ* ) | 
						
							| 50 | 20 30 31 49 | syl3anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑧 )  ∈  ℝ* ) | 
						
							| 51 |  | xrletri3 | ⊢ ( ( ( 𝑥 𝐷 𝑧 )  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( ( 𝑥 𝐷 𝑧 )  =  0  ↔  ( ( 𝑥 𝐷 𝑧 )  ≤  0  ∧  0  ≤  ( 𝑥 𝐷 𝑧 ) ) ) ) | 
						
							| 52 | 50 42 51 | sylancl | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( ( 𝑥 𝐷 𝑧 )  =  0  ↔  ( ( 𝑥 𝐷 𝑧 )  ≤  0  ∧  0  ≤  ( 𝑥 𝐷 𝑧 ) ) ) ) | 
						
							| 53 | 46 48 52 | mpbir2and | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 𝐷 𝑧 )  =  0 ) | 
						
							| 54 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧  ↔  ( 𝑥 𝐷 𝑧 )  =  0 ) ) | 
						
							| 55 | 20 30 31 54 | syl12anc | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑧  ↔  ( 𝑥 𝐷 𝑧 )  =  0 ) ) | 
						
							| 56 | 53 55 | mpbird | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑦  ∧  𝑦 ( ~Met ‘ 𝐷 ) 𝑧 ) )  →  𝑥 ( ~Met ‘ 𝐷 ) 𝑧 ) | 
						
							| 57 |  | psmet0 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 𝐷 𝑥 )  =  0 ) | 
						
							| 58 |  | metidv | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥  ↔  ( 𝑥 𝐷 𝑥 )  =  0 ) ) | 
						
							| 59 | 58 | anabsan2 | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥  ↔  ( 𝑥 𝐷 𝑥 )  =  0 ) ) | 
						
							| 60 | 57 59 | mpbird | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥  ∈  𝑋 )  →  𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) | 
						
							| 61 | 1 | ssbrd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥 ( ~Met ‘ 𝐷 ) 𝑥  →  𝑥 ( 𝑋  ×  𝑋 ) 𝑥 ) ) | 
						
							| 62 | 61 | imp | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑥 )  →  𝑥 ( 𝑋  ×  𝑋 ) 𝑥 ) | 
						
							| 63 |  | brxp | ⊢ ( 𝑥 ( 𝑋  ×  𝑋 ) 𝑥  ↔  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) ) | 
						
							| 64 | 62 63 | sylib | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑥 )  →  ( 𝑥  ∈  𝑋  ∧  𝑥  ∈  𝑋 ) ) | 
						
							| 65 | 64 | simpld | ⊢ ( ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  ∧  𝑥 ( ~Met ‘ 𝐷 ) 𝑥 )  →  𝑥  ∈  𝑋 ) | 
						
							| 66 | 60 65 | impbida | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥 ( ~Met ‘ 𝐷 ) 𝑥 ) ) | 
						
							| 67 | 5 19 56 66 | iserd | ⊢ ( 𝐷  ∈  ( PsMet ‘ 𝑋 )  →  ( ~Met ‘ 𝐷 )  Er  𝑋 ) |